Skip to main content
Log in

Analysis of the quality factor of AlN-actuated micro-resonators in air and liquid

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The quality factor (Q) of different modes of self-actuated aluminium nitride beams operated in air and liquid media is analyzed applying different techniques. In air, both optical and electrical techniques are used. In the case of the optical approach, characterization is done with a laser Doppler vibrometer. The values for the Q factors are deduced straight forward from both the frequency spectrum and the transient response, while electrical impedance measurements need a more careful evaluation with two different fitting methods to obtain the Q factor of the vibration modes. In water, only optical measurements, more sensitive than the electrical measurements, could be used to determine the Q factor of selected modes. In addition, the results of finite element model analysis were compared to the experimental data, showing an excellent agreement regarding the modal shape and the resonance frequency of the microresonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ababneh A, Kreher H, Schmid U (2008) Etching behaviour of sputter-deposited aluminium nitride thin films in H3PO4 and KOH solutions. Microsyst Technol 14:567–573

    Article  Google Scholar 

  • Andrei A, Krupa K, Jozwik M, Delobelle P, Hirsinger L, Gorecki C, Nieradko L, Meunier C (2008) AlN as an actuation material for MEMS applications. The case of AlN driven multilayered cantilevers. Sens Actuators A 141:565–576

    Article  Google Scholar 

  • Basak S, Raman A, Garimella SV (2006) Hydrodynamic loading of microcantilevers vibrating in viscous fluids. J Appl Phys 99:114906

    Article  Google Scholar 

  • Cimalla V, Niebelschütz F, Tonisch K, Foerster Ch, Brueckner K, Cimalla I, Friedrich T, Pezoldt J, Stephan R, Hein M, Ambacher O (2007) Nanoelectromechanical devices for sensing applications. Sens Actuators B 126:24–34

    Article  Google Scholar 

  • Gatti PL, Ferrari V (2003) Applied structural and mechanical vibrations. Taylor & Francis (e-Library)

  • Ghatkesar MK, Braun T, Barwich V, Ramseyer JP, Gerber C, Hegner M, Lang HP (2008) Resonating modes of vibrating microcantilevers in liquid. Appl Phys Lett 92:043106

    Article  Google Scholar 

  • González-Castilla S, Olivares J, Clement M, Iborra E, Sangrador J, Malo J, Izpura JI (2008) Electrical detection of the mechanical resonances in AlN-actuated microbridges for mass sensing applications. Appl Phys Lett 92:183506

    Article  Google Scholar 

  • Hernando J, Sánchez-Rojas JL, González-Castilla S, Iborra E, Ababneh A, Schmid U (2008) Simulation and laser vibrometry characterization of piezoelectric AlN thin films. J Appl Phys 104:053502

    Google Scholar 

  • Le TT, Valbin L, Verjus F, Bourouina T (2006) Micromachined piezoelectric resonator al MHz. In: Proceedings of the SPIE—the international society for optical engineering 6172:61720M-1-8

  • Lee Y, Lim G, Moon W (2006) A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique. Sens Actuators A 130–131:105–110

    Google Scholar 

  • Leissa AW (1969) Vibration of plates. NASA SP160

  • Marshall WJ, Brigham GA (2004) Determining equivalent circuit parameters for low figure of merit transducers. Acoust Res Lett Online. doi:10.1121/1.1756031

  • Piazza G, Stephanou PJ, Pisano AP (2006) Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J Microelectromech Syst 15:6

    Article  Google Scholar 

  • Sanz P, Hernando J, Vazquez J, Sánchez-Rojas JL (2007) Laser vibrometry and impedance characterization of piezoelectric microcantilevers. J Micromech Microeng 17:931–937

    Article  Google Scholar 

  • Sharos LB, Raman A, Crittenden S, Reifenberger R (2004) Enhanced mass sensing using torsional and lateral resonances in microcantilevers. Appl Phys Lett 84:23

    Article  Google Scholar 

  • Shin S, Kim JP, Sim SJ, Lee J (2008) A multisized piezoelectric microcantilever biosensor array for the quantitative analysis of mass and surface stress. Appl Phys Lett 93:102902

    Article  Google Scholar 

  • Vazquez J, Sanz P, Sánchez-Rojas JL (2007) Behaviour of forbidden modes in the impedance characterization and modeling of piezoelectric microcantilevers. Sens Actuators A 136:417–425

    Article  Google Scholar 

  • Wickenden AE, Currano LJ, Takacs T, Pulskamp J, Dubey M, Hullavarad S, Vispute D (2003) The effect of microstructure on AlN MEMS resonator response. Integr Ferroelectr 54:565–574

    Article  Google Scholar 

  • Zuo C, Sinha N, Van der Spiegel J, Piazza G (2008) Multi-frequency pierce oscillators based on piezoelectric AlN contour-mode MEMS resonators. In: IEEE international frequency control symposium, pp 402–407

Download references

Acknowledgments

This work was supported by Junta de Comunidades de Castilla La Mancha project no. PCC08-0015-0722 and Spanish Ministerio de Educación y Ciencia project no. DPI2009-07497. The authors would like also to thank Detlev Cassel (University of Applied Sciences Zweibrücken), Ünsal Sökmen and Erwin Peiner (Technical University of Braunschweig) for their support during device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Manzaneque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzaneque, T., Hernando, J., Rodríguez-Aragón, L. et al. Analysis of the quality factor of AlN-actuated micro-resonators in air and liquid. Microsyst Technol 16, 837–845 (2010). https://doi.org/10.1007/s00542-009-1003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-1003-2

Keywords

Navigation