Skip to main content
Log in

Piezoresistive biochemical sensors based on hydrogels

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Already 8 years ago, the usage of piezoresistive sensors for chemical measurands was proposed at the Solid State Electronics Laboratory of the Dresden University of Technology. Adding functionalised polymer coating which shows swelling due to chemical or biological values leads to a similar deflection of the thin silicon bending plate like for pressure sensors. The application of “stimuli-responsive” or “smart” cross-linked gels in chemical sensors is based on their ability to a phase transition under the influence of external excitations (pH, concentration of additives in water, temperature). Combining a “smart” hydrogel and a micro fabricated pressure sensor chip allows to continuously monitor the analyte-dependent swelling of a hydrogel and hence the analyte concentration in ambient aqueous solutions. The sensitivity of hydrogels with regard to the concentration of such additives as H+-ions (pH sensor), transition-metal ions, salts, organic solvents and proteins in water was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arndt KF, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler HJ (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polymerica 50:383–390

    Article  Google Scholar 

  • Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505

    Article  Google Scholar 

  • Arndt KF, Knörgen M, Richter S, Schmidt T (2006) NMR imaging: monitoring of swelling of environmental sensitive hydrogels. In: Webb GA (ed) Modern magnetic resonance, v.1 applications in chemistry. Springer, Berlin, pp 1–7

    Google Scholar 

  • Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. Smart Mater Struct 17:045011

    Article  Google Scholar 

  • Benoit D, Chaplinski V, Braslau R, Hawker CJ (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J Am Chem Soc 121:3904–3920

    Article  Google Scholar 

  • Crank J (1970) The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Drifford M, Delsanti M (2001) Polyelectrolyte solutions with multivalent added salts: stability, structure, and dynamics. In: Radeva T (ed) Physical chemistry of polyelectrolytes. Marcel Dekker Inc, New York, pp 135–161

    Google Scholar 

  • Esser-Kahn AP, Francis MB (2008) Protein-cross-linked polymeric materials through site-selective bioconjugation. Angew Chem 47(20):3751–3754

    Article  Google Scholar 

  • Gerlach G, Doetzel W (2008) Introduction to microsystem technology. Wiley, Chichester

    Google Scholar 

  • Gerlach G, Pfeifer G, Schmidt FM (1986) Humidity sensor. German patent DD 236 173 A1, May 28 1986

  • Gerlach G, Arndt KF, Sorber J, Richter A (2001) Sensor for the detection and concentration measurement of components in a fluid. German patents DE 101 29 985C2, DE 101 29 986C2, DE 101 29 987C2, June 12 2001

  • Gerlach G, Guenther M, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuat B 111–112:555–561

    Article  Google Scholar 

  • Guenther M, Gerlach G (2009) Hydrogels for chemical sensors. In: Gerlach G, Arndt KF (eds) Hydrogel sensors and actuators. Springer series on chemical sensors and biosensors, vol 6. Springer, Berlin, pp 165–195

    Google Scholar 

  • Guenther M, Suchaneck G, Sorber J, Gerlach G, Arndt KF, Richter A (2003) pH Sensors based on polymeric hydrogels. Fine Mech Optics 48:320–322

    Google Scholar 

  • Guenther M, Gerlach G, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) pH Sensors Based on Polyelectrolytic Hydrogels. Proc SPIE 5759:540–548

    Article  Google Scholar 

  • Guenther M, Gerlach G, Kuckling D, Kretschmer K, Corten C, Weber J, Sorber J, Suchaneck G, Arndt KF (2006) Chemical sensors based on temperature-responsive hydrogels. Proc SPIE 6167:61670T1–61670T11

    Google Scholar 

  • Guenther M, Kuckling D, Corten C, Gerlach G, Sorber J, Suchaneck G, Arndt KF (2007a) Chemical sensors based on multiresponsive block copolymer hydrogels. Sens Actuat B 126:97–106

    Article  Google Scholar 

  • Guenther M, Gerlach G, Wallmersperger T (2007b) Modeling of nonlinear effects in pH sensors based on polyelectrolytic hydrogels. Proc SPIE 6524:652417-1–652417-11

    Google Scholar 

  • Guenther M, Gerlach G, Corten C, Kuckling D, Sorber J, Arndt KF (2008a) Hydrogel-based sensor for a rheochemical characterization of solutions. Sens Actuat B 132(2):471–476

    Article  Google Scholar 

  • Guenther M, Gerlach G, Sorber J (2008b) Sensor for the measurement of fluid viscosity. German patent DE 10 2006 029 285 B4, Mar 13 2008

  • Guenther M, Gerlach G, Sorber J, Kuckling D (2008c) Sensor and method for the concentration measurement of components in a fluid. German patent DE 10 2006 027 051 B4, Mar 27 2008

  • Guenther M, Wallmersperger T, Gerlach G, Stewart M, Shi Z, Müller DJ (2008d) Hydrogels as sensitive materials for biomedical applications: modeling and experiments. In: Digest of Technical Papers. 22nd International Conference “Eurosensors”, Sept 7–10, 2008, Dresden, Germany, VDI, Düsseldorf, pp 1078–1081 (on CD-ROM, ISBN 978-3-00-025217-4)

  • Guenther M, Gerlach G, Wallmersperger T (2009a) Nonlinear effects in hydrogel-based chemical sensors: experiment and modeling. J Intell Mat Struct 20:949–961. doi:10.1177/1045389X08101562

    Article  Google Scholar 

  • Guenther M, Gerlach G, Wallmersperger T, Schulz V (2009b) Modeling and experimental investigations of the sensitivity of piezoresistive chemical sensors based on polyelectrolytic hydrogels. Proc SPIE 7287:728729-1–728729-11

    Google Scholar 

  • Guenther M, Gerlach G, Wallmersperger T (2009c) Piezoresistive chemical sensors based on hydrogels. Proc SPIE 7362:736218-1–736218-12

    Google Scholar 

  • Han IS, Han MH, Kim J, Lew S, Lee YJ, Horkay F, Magda JJ (2002) Constant-volume hydrogel osmometer: a new device concept for miniature biosensors. Biomacromolecules 3:1271–1275

    Article  Google Scholar 

  • Harmon ME, Kuckling D, Frank CW (2003) Photo-cross-linkable PNIPAAm copolymers. 5. Mechanical properties of hydrogel layers. Langmuir 19:10660–10665

    Article  Google Scholar 

  • Herber S, Eijkel J, Olthuis W, Bergveld P, van den Berg A (2004) Study of chemically induced pressure generation of hydrogels under isochoric conditions using a microfabricated device. J Chem Phys 121:2746–2751

    Article  Google Scholar 

  • Iyer G, Tillekeratne LMV, Coleman MR, Nadarajah A (2008) Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part II: solution effects. Polymer 49:3744–3750

    Article  Google Scholar 

  • Jung DY, Magda JJ, Han IS (2000) Catalase effects on glucose-sensitive hydrogels. Macromolecules 33:3332–3336

    Article  Google Scholar 

  • Kuckling D, Hoffmann J, Plötner M, Ferse D, Kretschmer K, Adler HJ, Arndt KF, Reichelt R (2003) Photo cross-linkable poly(N-isopropylacrylamide) copolymers III: micro-fabricated temperature responsive hydrogels. Polymer 44:4455–4462

    Article  Google Scholar 

  • Lei M, Baldi A, Nuxoll E, Siegel RA, Ziaie B (2006) A hydrogel-based implantable micromachined transponder for wireless glucose measurement. Diabetes Techn & Therap 8:112–122

    Article  Google Scholar 

  • Lei M, Baldi A, Nuxoll E, Siegel RA, Ziaie B (2009) Hydrogel-based microsensors for wireless chemical monitoring. Biomed Microdevices 11:529–538. doi:10.1007/s10544-008-9168-5

    Article  Google Scholar 

  • Lin G, Changa S, Kuoa CH, Magda J, Solzbacher F (2009) Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sens Actuat B 136:186–195

    Article  Google Scholar 

  • Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  • Nickolov ZS, Miller JD (2005) Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band. J Colloid Interface Sci 287:572–580

    Article  Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270

    Article  Google Scholar 

  • Saito S, Konno M, Inomata H (1993) Volume phase transition of N-alkylacrylamide gels. In: Dusek K (ed) Responsive gels: volume transitions I, advances in Polymer Science 109. Springer, Berlin, pp 207–232

    Google Scholar 

  • Schulz V, Guenther M, Gerlach GU, Magda JJ, Tathireddy P, Rieth L, Solzbacher F (2009) In vitro investigations of a pH- and ionic-strength-responsive polyelectrolytic hydrogel using a piezoresistive microsensor. Proc SPIE 7287:728712-1–728712-10

    Google Scholar 

  • Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: II Electrical stimulation. Smart Mater Struct 17:045012

    Article  Google Scholar 

  • Wallmersperger T, Ballhause D, Kröplin B, Guenther M, Shi Z, Gerlach G (2008) Coupled chemo-electro-mechanical simulation of polyelectrolyte gels as actuators and sensors. Proc SPIE 6927:69270Y-1–69270Y-10

    Google Scholar 

  • Wallmersperger T, Ballhause D, Kröplin B, Günther M, Gerlach G (2009) Coupled multi-field formulation in space and time for the simulation of intelligent hydrogels. J Intell Mat Struc 20(12):1483–1492. doi:10.1177/1045389X09105236

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support of this work from the Deutsche Forschungsgemeinschaft (SPP 1259, grants Ge 779/14-1 and Ge 779/14-2). C. Corten is thanked for the preparation of the hydrogel samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Guenther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guenther, M., Gerlach, G. & Wallmersperger, T. Piezoresistive biochemical sensors based on hydrogels. Microsyst Technol 16, 703–715 (2010). https://doi.org/10.1007/s00542-009-0978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0978-z

Keywords

Navigation