Microdroplet generation in gaseous and liquid environments

Abstract

As trends in biology, chemistry, medicine and manufacturing have pushed macroscopic processes onto the micro scale, droplet generation has been a key factor in allowing these methods to translate. For both surface-based liquid-in-gas generation and lab-on-a-chip-based liquid-in-liquid generation, the ability to create small monodisperse liquid droplets is critically important in constructing reliable and practical devices. This article reviews liquid microdroplet generation in gaseous and liquid environments, covering the general characteristics of generators and the specific methods and technologies used for generation. Furthermore, this study compiles the issues encountered when operating generators, and the measurements and instrumentation used to characterize generated droplets. Applications of droplet generation in printing, analysis, synthesis and manufacturing are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Notes

  1. 1.

    In this review, air will be the assumed gas in liquid-in-gas generators unless otherwise noted.

  2. 2.

    Coefficient of variation (CV): ratio of the standard deviation to the mean.

  3. 3.

    Potentially fluorescent molecules are tagged with a probe that can later be reacted with a fluorescently labeled affinity reaction.

References

  1. Aderogba S, Meacham JM, Degertekin FL, Fedorov AG, Fernandez F (2005) Nanoelectrospray ion generation for high-throughput mass spectrometry using a micromachined ultrasonic ejector array. Appl Phys Lett 86:203110-1-3

    Google Scholar 

  2. Amirzadeh Goghari A, Chandra S (2008) Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator. Exp Fluids 44:105–114

    Article  Google Scholar 

  3. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  4. Baek SS, Choi B, Oh Y (2004) Design of a high-density thermal inkjet using heat transfer from CVD diamond. J Micromech Microeng 14:750–760

    Article  Google Scholar 

  5. Ben-Tzvi P, Ben Mrad R, Goldenberg AA (2007) A conceptual design and FE analysis of a piezoceramic actuated dispensing system for microdrops generation in microarray applications. Mechatron 17:1–13

    Article  Google Scholar 

  6. Berggren WT, Westphall MS, Smith LM (2002) Single-pulse nanoelectrospray ionization. Anal Chem 74:3443–3448

    Article  Google Scholar 

  7. Bergkvist J, Lilliehorn T, Nilsson J, Johansson S, Laurell T (2005) Miniaturized flowthrough microdispenser with piezoceramic tripod actuation. J Microelectromech Syst 14:134–140

    Article  Google Scholar 

  8. Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28:314–321

    Google Scholar 

  9. Bransky A, Korin N, Khoury M, Levenberg S (2009) A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9:516–520

    Article  Google Scholar 

  10. Bruce CA (1976) Dependence of ink jet dynamics on fluid characteristics. IBM J Res Dev 20:258–270

    Google Scholar 

  11. Brünahl J, Grishin AM (2002) Piezoelectric shear mode drop-on-demand inkjet actuator. Sens Actuators A Phys 101:371–382

    Article  Google Scholar 

  12. Buehner WL, Hill JD, Williams TH, Woods JW (1977) Application of ink-jet technology to a word processing output printer. IBM J Res Dev 21:2–9

    Article  Google Scholar 

  13. Cabal A, Ross DS, Lebens JA, Trauernicht DP (2005) Thermal actuator with optimized heater for liquid drop ejectors. Sens Actuators A Phys 123–124:531–539

    Google Scholar 

  14. Castrejón-Pita JR, Martin GD, Hoath SD, Hutchings IM (2008) A simple large-scale droplet generator for studies of inkjet printing. Rev Sci Instrum 79:075108-1-8

    Google Scholar 

  15. Chang S, Attinger D, Chiang FP, Zhao Y, Patel RC (2004) SIEM measurement of ultimate tensile strength and tensile modulus of jetted, UV-cured epoxy resin microsamples. Rapid Prototyp J 10:193–199

    Article  Google Scholar 

  16. Chang TN, Parthasarathy S, Wang T, Gandhi K, Soteropoulos P (2006) Automated liquid dispensing pin for DNA microarray applications. IEEE Trans Autom Sci Eng 3:187–191

    Article  Google Scholar 

  17. Chen AU, Basaran OA (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4

    Article  Google Scholar 

  18. Cooley P, Wallace D, Antohe B (2001) Applications of ink-jet printing technology to bioMEMS and microfluidic systems. Proc SPIE Conf Microfluid BioMEMS 4560:177–188

    Google Scholar 

  19. Dadvand A, Khoo BC, Shervani-Tabar MT (2009) A collapsing bubble-induced microinjector: an experimental study. Exp Fluids 46:419–434

    Article  Google Scholar 

  20. De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213

    Article  Google Scholar 

  21. De Heij B, Van Der Schoot B, Bo H, Hess J, De Rooij NF (2000) Characterization of a fL droplet generator for inhalation drug therapy. Sens Actuators A Phys 85:430–434

    Article  Google Scholar 

  22. Demirci U, Yaralioglu GG, Hæggström E, Khuri-Yakub BT (2005) Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays. IEEE Trans Semiconduct Manuf 18:709–715

    Article  Google Scholar 

  23. Dixon D (2004) Time pressure dispensing. In: White papers. Universal Instruments. http://www4.uic.com/wcms/WCMS2.nsf/index/Resources_58.html. Accessed 11 Sept 2009

  24. Ederer I, Raetsch P, Schullerus W, Tille C, Zech U (1997) Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output. Sens Actuators A Phys 62:752–755

    Article  Google Scholar 

  25. Ekström S, Önnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G (2000) Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 72:286–293

    Article  Google Scholar 

  26. Elmqvist R (1951) Measuring instrument of the recording type. US patent 2,566,443

  27. Endo I, Sato Y, Saito S, Nakagiri T, Ohno S (1979) Liquid jet recording process and apparatus therefor. UK patent 2,007,162

  28. Erdem EY, Baskaran R, Böhringer KF (2008) Vibration induced droplet generation on textured surfaces. IEEE Int Conf MEMS 603–606

  29. Fan KC, Chen JY, Wang CH, Pan WC (2008) Development of a drop-on-demand droplet generator for one-drop-fill technology. Sens Actuators A Phys 147:649–655

    Article  Google Scholar 

  30. Forget M, O’Donnell M, Davies M (2008) Characterization of a liquid bridge microdroplet dispenser for use in molecular diagnosis. Proc Inst Mech Eng Part C J Mech Eng Sci 222:777–786

    Article  Google Scholar 

  31. Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60

    Article  Google Scholar 

  32. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  Google Scholar 

  33. Govor LV, Parisi J, Bauer GH, Reiter G (2005) Instability and droplet formation in evaporating thin films of a binary solution. Phys Rev E 71:051603-1-9

    Google Scholar 

  34. Gutmann O, Niekrawietz R, Steinert CP, Sandmaier H, Messner S, De Heij B, Daub M, Zengerle R (2003) Droplet release in a highly parallel, pressure driven nanoliter dispenser. In: International conference on solid-state sensors actuators and microsystem, 364–367

  35. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536

    Article  Google Scholar 

  36. Hansen CL, Sommer MOA, Quake SR (2004) Systematic investigation of protein phase behavior with a microfluidic formulator. Proc Natl Acad Sci USA 101:14431–14436

    Article  Google Scholar 

  37. Harada T, Ishikawa N, Kanda T, Suzumori K, Yamada Y, Sotowa KI (2008) Droplets generation by a torsional bolt-clamped Langevin-type transducer and micropore plate. In: Proceedings on IEEE international ultrasonics symposium, 627–630

  38. He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  Google Scholar 

  39. Hebner TR, Wu CC, Marcy D, Lu HM, Strum JC (1998) Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett 72:519–521

    Article  Google Scholar 

  40. Hirata S, Ishii Y, Matoba H, Inui T (1996) An ink-jet head using diaphragm microactuator. In: Proceedings of MEMS Workshop, 418–423

  41. Hosseini Y, Ikram S, Kaler KVIS (2008) A CMOS optical feedback control for high-speed DEP based microfluidic actuation. Microsyst Nanoelectron Res Conf 137–140

  42. Huang D, Kim ES (2001) Micromachined acoustic-wave liquid ejector. J Microelectromech Syst 10:442–449

    Article  Google Scholar 

  43. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 1218–1220

  44. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178

    Article  Google Scholar 

  45. Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675

    Article  Google Scholar 

  46. Jaklevic JM, Garner HR, Miller GA (1999) Instrumentation for the genome project. Annu Rev Biomed Eng 1:649–678

    Article  Google Scholar 

  47. Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448

    Article  Google Scholar 

  48. Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically driven commercial inkjet head. In: International workshop on MEMS, 63–68

  49. Kamisuki S, Fujii M, Takekoshi T, Tezuka C, Atobe M (2000) A high resolution, electrostatically driven commercial inkjet head. In: International conference on MEMS, 793–798

  50. Kanagasabapathi TT, Kaler KVIS (2007) Surface microfluidics—high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17:743–752

    Article  Google Scholar 

  51. Kanda T, Ishikawa N, Suzumori K, Yoshizawa H, Yamada Y (2007) Droplets generation using micropore plate driven by Langevin type transducer. In: Proceedings of international congress on ultrasonics 1346:1–4

  52. Kim KT, Park YW (2008) Feasibility of low-cost microarray printing with inkjet printer. In: International conference on control automation systems, 1932–1935

  53. Kim SJ, Song YA, Skipper PL, Han J (2006) Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip. Anal Chem 78:8011–8019

    Article  Google Scholar 

  54. Kim C, Lee KS, Lee IH, Shin KS, Kang E, Lee KJ, Kang JY (2007) Three dimensional perfusion culture of encapsulated embryonic stem cells in microfluidic chip. In: International solid-state sensors actuators microsystem conference, 1333–1334

  55. Kim J, Byun D, Hong J, deMello AJ (2009) Droplets generation method for water-in-oil state in the polydimethylsiloxane microchannel with grooves. In: IEEE international conference on MEMS, 523–526

  56. Koltay P, Birkenmeier B, Steger R, Sandmaier H, Zengerle R (2002) Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation. In: International conference on new Actuators, 235–239

  57. Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115

    Article  Google Scholar 

  58. Kyser EL, Sears SB (1976) Method and apparatus for recording with writing fluids and drop projection means therefor. US patent 3,946,398

  59. Laurell T, Wallman L, Nilsson J (1999) Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. J Micromech Microeng 9:369–376

    Article  Google Scholar 

  60. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62

    Google Scholar 

  61. Lee ER (2003) Microdrop generation. CRC Press, Boca Raton

    Google Scholar 

  62. Lee CH, Lal A (2004) Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary. IEEE Trans Ultrason Ferroelectr Freq Control 51:1514–1522

    Article  Google Scholar 

  63. Lee YS, Kim MS, Shin SJ, Shin S, Kuk K, Sohn DK (2004) Lumped modeling of crosstalk behavior of thermal inkjet print heads. ASME Int Mech Eng Congr Expo 61413:1–8

    Google Scholar 

  64. Lee TM, Kang TG, Yang JS, Jo JD, Kim KY, Choi BO, Kim DS (2007) 3D metal microstructure fabrication using a molten metal DoD inkjet system. In: International solid-state sensors actuators microsystem conference, 1637–1640

  65. Lindemann T, Ashauer H, Yu Y, Sassano DS, Zengerle R, Koltay P (2007) One inch thermal bubble jet printhead with laser structured integrated polyimide nozzle plate. J Microelectromech Syst 16:420–428

    Article  Google Scholar 

  66. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503-1-4

    Google Scholar 

  67. Liu K, Ding HJ, Liu J, Chen Y, Zhao XZ (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22:9453–9457

    Article  Google Scholar 

  68. MacFarlane DL, Narayan V, Tatum JA DL, Cox WR, Chen T, Hayes DJ (1994) Microjet fabrication of microlens arrays. IEEE Photonics Technol Lett 6:1112–1114

    Article  Google Scholar 

  69. Meacham JM, Varady MJ, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605-1-8

    Google Scholar 

  70. Miliotis T, Kjellström S, Nilsson J, Laurell T, Edholm LE, Marko-Varga G (2000) Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. J Mass Spectrom 35:369–377

    Article  Google Scholar 

  71. Moore SK (2001) Making chips to probe genes. IEEE Spectr 38:54–60

    Article  Google Scholar 

  72. Nguon B, Jouaneh M (2004) Design and characterization of a precision fluid dispensing valve. Int J Adv Manuf Technol 24:251–260

    Article  Google Scholar 

  73. Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26

    Article  Google Scholar 

  74. Orme M, Smith RF (2000) Enhanced aluminum properties by means of precise droplet deposition. ASME J Manuf Sci Eng 122:484–493

    Article  Google Scholar 

  75. Orme M, Liu Q, Smith R (2000) Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum Trans J 3:95–103

    Google Scholar 

  76. Ozen O, Aubry N, Papageorgiou DT, Petropoulos PG (2006) Monodisperse drop formation in square microchannels. Phys Rev Lett 96:144501-1-4

    Google Scholar 

  77. Perçin G, Khuri-Yaku BT (2002) Micromachined droplet ejector arrays for controlled ink-jet printing and deposition. Rev Sci Instrum 73:2193–2196

    Article  Google Scholar 

  78. Perçin G, Lundgren TS, Khuri-Yakub BT (1998) Controlled ink-jet printing and deposition of organic polymers and solid particles. Appl Phys Lett 73:2375–2377

    Article  Google Scholar 

  79. Piracci AF (2000) Advantages of non-contact dispensing in SMT assembly processes. In: Articles & papers. Asymtek. http://www.asymtek.eu/news/articles/2000_09_smta_ate.pdf Accessed 11 Sept 2009

  80. Rayleigh JWS (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Article  Google Scholar 

  81. Rose D (1999) Microdispensing technologies in drug discovery. Drug Discov Today 4:411–419

    Article  Google Scholar 

  82. Roth CM, Yarmush ML (1999) Nucleic acid biotechnology. Annu Rev Biomed Eng 1:265–297

    Article  Google Scholar 

  83. Samuel JDJS, Steger R, Birkle G, Zengerle R, Koltay P, Rühe J (2005) Modification of micronozzle surfaces using fluorinated polymeric nanofilms for enhanced dispensing of polar and nonpolar fluids. Anal Chem 77:6469–6474

    Article  Google Scholar 

  84. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306

    Article  Google Scholar 

  85. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619

    Article  Google Scholar 

  86. Song H, Tice JD, Ismagilov R (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed Engl 42:767–772

    Google Scholar 

  87. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150

    Article  Google Scholar 

  88. Stachowiak JC, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA (2008) Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc Natl Acad Sci USA 105:4697–4702

    Article  Google Scholar 

  89. Steger R, Koltay P, Birkle G, Strobelt T, Sandmaier H, Zengerle R (2002) Two-dimensional array of piezostack actuated nanoliter dispensers. In: International conference on new actuators, 537–541

  90. Steinert CP, Goutier I, Gutmann O, Sandmaier H, Messner S, Daub M, De Heij B, Zengerle R (2003) An improved 24 channel picoliter dispenser based on direct liquid displacement. In: International conference on solid-state sensors actuators microsystems, 376–379

  91. Sugiura S, Nakajima M, Iwamoto S, Seki S (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566

    Article  Google Scholar 

  92. Sui G, Leu MC (2003) Investigation of layer thickness and surface roughness in rapid freeze prototyping. ASME J Manuf Sci Eng 125:556–563

    Article  Google Scholar 

  93. Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36:131–136

    Article  Google Scholar 

  94. Switzer GL (1991) A versatile system for stable generation of uniform droplets. Rev Sci Instrum 62:2765–2771

    Article  Google Scholar 

  95. Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Packag Manuf 25:26–33

    Article  Google Scholar 

  96. Takahashi S, Kitagawa H, Tomikawa Y (2002) A study of liquid dispensing head using fluidic inertia. Jpn J Appl Phys 41:3442–3445

    Article  Google Scholar 

  97. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701

    Article  Google Scholar 

  98. Tan YC, Collins J, Lee AP (2003) Controlled fission of droplet emulsion in bifurcating microfluidic channels. In: International conference on solid-state sensors actuators microsystem, 28–31

  99. Tan ZW, Teo SGG, Hu J (2008) Ultrasonic generation and rotation of a small droplet at the tip of a hypodermic needle. J Appl Phys 104:104902-1-5

    Google Scholar 

  100. Tseng FG, Linder C, Kim CJ, Ho CM (1996) Control of mixing with micro injectors for combustion application. In: Proceedings of MEMS ASME IMECE, 183–197

  101. Tseng FG, Kim CJ, Ho CM (1998) A microinjector free of satellite drops and characterization of the ejected droplets. Symp Appl Micro-Fabr Fluid Mech 89-95

  102. Tseng FG, Kim CJ, Ho CM (1998) A novel microinjector with virtual chamber neck. In: Proceedings of international workshop on MEMS, 57–62

  103. Tseng FG, Kim CJ, Ho CM (2002a) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part i: concept, design, and model. J Microelectromech Syst 11:427–436

    Article  Google Scholar 

  104. Tseng FG, Kim CJ, Ho CM (2002b) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part ii: fabrication, implementation, and characterization. J Microelectromech Syst 11:437–447

    Article  Google Scholar 

  105. Ulmke H, Wriedt T, Bauckhage K (2001) Piezoelectric droplet generator for the calibration of particle-sizing instruments. Chem Eng Technol 24:265–268

    Article  Google Scholar 

  106. Vaught JL, Cloutier FL, Donald DK, Meyer JD, Tacklind CA, Taub HH (1984) Thermal ink jet printer. US patent 4,490,728

  107. Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26:3716–3724

    Article  Google Scholar 

  108. Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813

    Article  Google Scholar 

  109. Wu HC, Lin HJ, Hwang WS (2005) A numerical study of the effect of operating parameters on drop formation in a squeeze mode inkjet device. Model Simul Mater Sci Eng 13:17–34

    Article  Google Scholar 

  110. Wu L, Li GP, Xu W, Bachman M (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89:144106-1-3

    Google Scholar 

  111. Yuan S, Zhou Z, Wang G, Liu C (2003) MEMS-based piezoelectric array microjet. Microelectron Eng 66:767–772

    Article  Google Scholar 

  112. Zhang M, Ma O, Diao X (2006) Dynamics modeling and analysis of inkjet technology-based oligo DNA microarray spotting. IEEE Trans Autom Sci Eng 3:159–168

    Article  Google Scholar 

  113. Zhao YX, Li HX, Ding H, Xiong YL (2005) Integrated modelling of a time-pressure fluid dispensing system for electronics manufacturing. Int J Adv Manuf Technol 26:1–9

    Article  Google Scholar 

  114. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63

    Article  Google Scholar 

  115. Zoltan SI (1972) Pulsed droplet ejecting system. US patent 3,683,212

Download references

Acknowledgments

This work is partly funded by the George Washington University Facilitating Fund/Dilthey grant # 111701.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pinhas Ben-Tzvi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ben-Tzvi, P., Rone, W. Microdroplet generation in gaseous and liquid environments. Microsyst Technol 16, 333–356 (2010). https://doi.org/10.1007/s00542-009-0962-7

Download citation

Keywords

  • Liquid Bridge
  • Droplet Generator
  • Continuous Stream
  • Carrier Fluid
  • Carrier Liquid