Microsystem Technologies

, Volume 16, Issue 3, pp 333–356 | Cite as

Microdroplet generation in gaseous and liquid environments

  • Pinhas Ben-TzviEmail author
  • Will Rone
Review Paper


As trends in biology, chemistry, medicine and manufacturing have pushed macroscopic processes onto the micro scale, droplet generation has been a key factor in allowing these methods to translate. For both surface-based liquid-in-gas generation and lab-on-a-chip-based liquid-in-liquid generation, the ability to create small monodisperse liquid droplets is critically important in constructing reliable and practical devices. This article reviews liquid microdroplet generation in gaseous and liquid environments, covering the general characteristics of generators and the specific methods and technologies used for generation. Furthermore, this study compiles the issues encountered when operating generators, and the measurements and instrumentation used to characterize generated droplets. Applications of droplet generation in printing, analysis, synthesis and manufacturing are also discussed.


Liquid Bridge Droplet Generator Continuous Stream Carrier Fluid Carrier Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partly funded by the George Washington University Facilitating Fund/Dilthey grant # 111701.

Conflict of interest statement

The authors declare that they have no conflict of interest.


  1. Aderogba S, Meacham JM, Degertekin FL, Fedorov AG, Fernandez F (2005) Nanoelectrospray ion generation for high-throughput mass spectrometry using a micromachined ultrasonic ejector array. Appl Phys Lett 86:203110-1-3Google Scholar
  2. Amirzadeh Goghari A, Chandra S (2008) Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator. Exp Fluids 44:105–114CrossRefGoogle Scholar
  3. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  4. Baek SS, Choi B, Oh Y (2004) Design of a high-density thermal inkjet using heat transfer from CVD diamond. J Micromech Microeng 14:750–760CrossRefGoogle Scholar
  5. Ben-Tzvi P, Ben Mrad R, Goldenberg AA (2007) A conceptual design and FE analysis of a piezoceramic actuated dispensing system for microdrops generation in microarray applications. Mechatron 17:1–13CrossRefGoogle Scholar
  6. Berggren WT, Westphall MS, Smith LM (2002) Single-pulse nanoelectrospray ionization. Anal Chem 74:3443–3448CrossRefGoogle Scholar
  7. Bergkvist J, Lilliehorn T, Nilsson J, Johansson S, Laurell T (2005) Miniaturized flowthrough microdispenser with piezoceramic tripod actuation. J Microelectromech Syst 14:134–140CrossRefGoogle Scholar
  8. Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J Res Dev 28:314–321Google Scholar
  9. Bransky A, Korin N, Khoury M, Levenberg S (2009) A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip 9:516–520CrossRefGoogle Scholar
  10. Bruce CA (1976) Dependence of ink jet dynamics on fluid characteristics. IBM J Res Dev 20:258–270Google Scholar
  11. Brünahl J, Grishin AM (2002) Piezoelectric shear mode drop-on-demand inkjet actuator. Sens Actuators A Phys 101:371–382CrossRefGoogle Scholar
  12. Buehner WL, Hill JD, Williams TH, Woods JW (1977) Application of ink-jet technology to a word processing output printer. IBM J Res Dev 21:2–9CrossRefGoogle Scholar
  13. Cabal A, Ross DS, Lebens JA, Trauernicht DP (2005) Thermal actuator with optimized heater for liquid drop ejectors. Sens Actuators A Phys 123–124:531–539Google Scholar
  14. Castrejón-Pita JR, Martin GD, Hoath SD, Hutchings IM (2008) A simple large-scale droplet generator for studies of inkjet printing. Rev Sci Instrum 79:075108-1-8Google Scholar
  15. Chang S, Attinger D, Chiang FP, Zhao Y, Patel RC (2004) SIEM measurement of ultimate tensile strength and tensile modulus of jetted, UV-cured epoxy resin microsamples. Rapid Prototyp J 10:193–199CrossRefGoogle Scholar
  16. Chang TN, Parthasarathy S, Wang T, Gandhi K, Soteropoulos P (2006) Automated liquid dispensing pin for DNA microarray applications. IEEE Trans Autom Sci Eng 3:187–191CrossRefGoogle Scholar
  17. Chen AU, Basaran OA (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4CrossRefGoogle Scholar
  18. Cooley P, Wallace D, Antohe B (2001) Applications of ink-jet printing technology to bioMEMS and microfluidic systems. Proc SPIE Conf Microfluid BioMEMS 4560:177–188Google Scholar
  19. Dadvand A, Khoo BC, Shervani-Tabar MT (2009) A collapsing bubble-induced microinjector: an experimental study. Exp Fluids 46:419–434CrossRefGoogle Scholar
  20. De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213CrossRefGoogle Scholar
  21. De Heij B, Van Der Schoot B, Bo H, Hess J, De Rooij NF (2000) Characterization of a fL droplet generator for inhalation drug therapy. Sens Actuators A Phys 85:430–434CrossRefGoogle Scholar
  22. Demirci U, Yaralioglu GG, Hæggström E, Khuri-Yakub BT (2005) Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays. IEEE Trans Semiconduct Manuf 18:709–715CrossRefGoogle Scholar
  23. Dixon D (2004) Time pressure dispensing. In: White papers. Universal Instruments. Accessed 11 Sept 2009
  24. Ederer I, Raetsch P, Schullerus W, Tille C, Zech U (1997) Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output. Sens Actuators A Phys 62:752–755CrossRefGoogle Scholar
  25. Ekström S, Önnerfjord P, Nilsson J, Bengtsson M, Laurell T, Marko-Varga G (2000) Integrated microanalytical technology enabling rapid and automated protein identification. Anal Chem 72:286–293CrossRefGoogle Scholar
  26. Elmqvist R (1951) Measuring instrument of the recording type. US patent 2,566,443Google Scholar
  27. Endo I, Sato Y, Saito S, Nakagiri T, Ohno S (1979) Liquid jet recording process and apparatus therefor. UK patent 2,007,162Google Scholar
  28. Erdem EY, Baskaran R, Böhringer KF (2008) Vibration induced droplet generation on textured surfaces. IEEE Int Conf MEMS 603–606Google Scholar
  29. Fan KC, Chen JY, Wang CH, Pan WC (2008) Development of a drop-on-demand droplet generator for one-drop-fill technology. Sens Actuators A Phys 147:649–655CrossRefGoogle Scholar
  30. Forget M, O’Donnell M, Davies M (2008) Characterization of a liquid bridge microdroplet dispenser for use in molecular diagnosis. Proc Inst Mech Eng Part C J Mech Eng Sci 222:777–786CrossRefGoogle Scholar
  31. Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60CrossRefGoogle Scholar
  32. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446CrossRefGoogle Scholar
  33. Govor LV, Parisi J, Bauer GH, Reiter G (2005) Instability and droplet formation in evaporating thin films of a binary solution. Phys Rev E 71:051603-1-9Google Scholar
  34. Gutmann O, Niekrawietz R, Steinert CP, Sandmaier H, Messner S, De Heij B, Daub M, Zengerle R (2003) Droplet release in a highly parallel, pressure driven nanoliter dispenser. In: International conference on solid-state sensors actuators and microsystem, 364–367Google Scholar
  35. Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99:16531–16536CrossRefGoogle Scholar
  36. Hansen CL, Sommer MOA, Quake SR (2004) Systematic investigation of protein phase behavior with a microfluidic formulator. Proc Natl Acad Sci USA 101:14431–14436CrossRefGoogle Scholar
  37. Harada T, Ishikawa N, Kanda T, Suzumori K, Yamada Y, Sotowa KI (2008) Droplets generation by a torsional bolt-clamped Langevin-type transducer and micropore plate. In: Proceedings on IEEE international ultrasonics symposium, 627–630Google Scholar
  38. He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544CrossRefGoogle Scholar
  39. Hebner TR, Wu CC, Marcy D, Lu HM, Strum JC (1998) Ink-jet printing of doped polymers for organic light emitting devices. Appl Phys Lett 72:519–521CrossRefGoogle Scholar
  40. Hirata S, Ishii Y, Matoba H, Inui T (1996) An ink-jet head using diaphragm microactuator. In: Proceedings of MEMS Workshop, 418–423Google Scholar
  41. Hosseini Y, Ikram S, Kaler KVIS (2008) A CMOS optical feedback control for high-speed DEP based microfluidic actuation. Microsyst Nanoelectron Res Conf 137–140Google Scholar
  42. Huang D, Kim ES (2001) Micromachined acoustic-wave liquid ejector. J Microelectromech Syst 10:442–449CrossRefGoogle Scholar
  43. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, deMello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 1218–1220Google Scholar
  44. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178CrossRefGoogle Scholar
  45. Jahn A, Vreeland WN, Gaitan M, Locascio LE (2004) Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J Am Chem Soc 126:2674–2675CrossRefGoogle Scholar
  46. Jaklevic JM, Garner HR, Miller GA (1999) Instrumentation for the genome project. Annu Rev Biomed Eng 1:649–678CrossRefGoogle Scholar
  47. Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448CrossRefGoogle Scholar
  48. Kamisuki S, Hagata T, Tezuka C, Nose Y, Fujii M, Atobe M (1998) A low power, small, electrostatically driven commercial inkjet head. In: International workshop on MEMS, 63–68Google Scholar
  49. Kamisuki S, Fujii M, Takekoshi T, Tezuka C, Atobe M (2000) A high resolution, electrostatically driven commercial inkjet head. In: International conference on MEMS, 793–798Google Scholar
  50. Kanagasabapathi TT, Kaler KVIS (2007) Surface microfluidics—high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17:743–752CrossRefGoogle Scholar
  51. Kanda T, Ishikawa N, Suzumori K, Yoshizawa H, Yamada Y (2007) Droplets generation using micropore plate driven by Langevin type transducer. In: Proceedings of international congress on ultrasonics 1346:1–4Google Scholar
  52. Kim KT, Park YW (2008) Feasibility of low-cost microarray printing with inkjet printer. In: International conference on control automation systems, 1932–1935Google Scholar
  53. Kim SJ, Song YA, Skipper PL, Han J (2006) Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip. Anal Chem 78:8011–8019CrossRefGoogle Scholar
  54. Kim C, Lee KS, Lee IH, Shin KS, Kang E, Lee KJ, Kang JY (2007) Three dimensional perfusion culture of encapsulated embryonic stem cells in microfluidic chip. In: International solid-state sensors actuators microsystem conference, 1333–1334Google Scholar
  55. Kim J, Byun D, Hong J, deMello AJ (2009) Droplets generation method for water-in-oil state in the polydimethylsiloxane microchannel with grooves. In: IEEE international conference on MEMS, 523–526Google Scholar
  56. Koltay P, Birkenmeier B, Steger R, Sandmaier H, Zengerle R (2002) Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation. In: International conference on new Actuators, 235–239Google Scholar
  57. Köster S, Angilè FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8:1110–1115CrossRefGoogle Scholar
  58. Kyser EL, Sears SB (1976) Method and apparatus for recording with writing fluids and drop projection means therefor. US patent 3,946,398Google Scholar
  59. Laurell T, Wallman L, Nilsson J (1999) Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling. J Micromech Microeng 9:369–376CrossRefGoogle Scholar
  60. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62Google Scholar
  61. Lee ER (2003) Microdrop generation. CRC Press, Boca RatonGoogle Scholar
  62. Lee CH, Lal A (2004) Single microdroplet ejection using an ultrasonic longitudinal mode with a PZT/tapered glass capillary. IEEE Trans Ultrason Ferroelectr Freq Control 51:1514–1522CrossRefGoogle Scholar
  63. Lee YS, Kim MS, Shin SJ, Shin S, Kuk K, Sohn DK (2004) Lumped modeling of crosstalk behavior of thermal inkjet print heads. ASME Int Mech Eng Congr Expo 61413:1–8Google Scholar
  64. Lee TM, Kang TG, Yang JS, Jo JD, Kim KY, Choi BO, Kim DS (2007) 3D metal microstructure fabrication using a molten metal DoD inkjet system. In: International solid-state sensors actuators microsystem conference, 1637–1640Google Scholar
  65. Lindemann T, Ashauer H, Yu Y, Sassano DS, Zengerle R, Koltay P (2007) One inch thermal bubble jet printhead with laser structured integrated polyimide nozzle plate. J Microelectromech Syst 16:420–428CrossRefGoogle Scholar
  66. Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92:054503-1-4Google Scholar
  67. Liu K, Ding HJ, Liu J, Chen Y, Zhao XZ (2006) Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22:9453–9457CrossRefGoogle Scholar
  68. MacFarlane DL, Narayan V, Tatum JA DL, Cox WR, Chen T, Hayes DJ (1994) Microjet fabrication of microlens arrays. IEEE Photonics Technol Lett 6:1112–1114CrossRefGoogle Scholar
  69. Meacham JM, Varady MJ, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17:100605-1-8Google Scholar
  70. Miliotis T, Kjellström S, Nilsson J, Laurell T, Edholm LE, Marko-Varga G (2000) Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. J Mass Spectrom 35:369–377CrossRefGoogle Scholar
  71. Moore SK (2001) Making chips to probe genes. IEEE Spectr 38:54–60CrossRefGoogle Scholar
  72. Nguon B, Jouaneh M (2004) Design and characterization of a precision fluid dispensing valve. Int J Adv Manuf Technol 24:251–260CrossRefGoogle Scholar
  73. Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2:24–26CrossRefGoogle Scholar
  74. Orme M, Smith RF (2000) Enhanced aluminum properties by means of precise droplet deposition. ASME J Manuf Sci Eng 122:484–493CrossRefGoogle Scholar
  75. Orme M, Liu Q, Smith R (2000) Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum Trans J 3:95–103Google Scholar
  76. Ozen O, Aubry N, Papageorgiou DT, Petropoulos PG (2006) Monodisperse drop formation in square microchannels. Phys Rev Lett 96:144501-1-4Google Scholar
  77. Perçin G, Khuri-Yaku BT (2002) Micromachined droplet ejector arrays for controlled ink-jet printing and deposition. Rev Sci Instrum 73:2193–2196CrossRefGoogle Scholar
  78. Perçin G, Lundgren TS, Khuri-Yakub BT (1998) Controlled ink-jet printing and deposition of organic polymers and solid particles. Appl Phys Lett 73:2375–2377CrossRefGoogle Scholar
  79. Piracci AF (2000) Advantages of non-contact dispensing in SMT assembly processes. In: Articles & papers. Asymtek. Accessed 11 Sept 2009
  80. Rayleigh JWS (1878) On the instability of jets. Proc Lond Math Soc 10:4–13CrossRefGoogle Scholar
  81. Rose D (1999) Microdispensing technologies in drug discovery. Drug Discov Today 4:411–419CrossRefGoogle Scholar
  82. Roth CM, Yarmush ML (1999) Nucleic acid biotechnology. Annu Rev Biomed Eng 1:265–297CrossRefGoogle Scholar
  83. Samuel JDJS, Steger R, Birkle G, Zengerle R, Koltay P, Rühe J (2005) Modification of micronozzle surfaces using fluorinated polymeric nanofilms for enhanced dispensing of polar and nonpolar fluids. Anal Chem 77:6469–6474CrossRefGoogle Scholar
  84. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306CrossRefGoogle Scholar
  85. Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125:14613–14619CrossRefGoogle Scholar
  86. Song H, Tice JD, Ismagilov R (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed Engl 42:767–772Google Scholar
  87. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150CrossRefGoogle Scholar
  88. Stachowiak JC, Richmond DL, Li TH, Liu AP, Parekh SH, Fletcher DA (2008) Unilamellar vesicle formation and encapsulation by microfluidic jetting. Proc Natl Acad Sci USA 105:4697–4702CrossRefGoogle Scholar
  89. Steger R, Koltay P, Birkle G, Strobelt T, Sandmaier H, Zengerle R (2002) Two-dimensional array of piezostack actuated nanoliter dispensers. In: International conference on new actuators, 537–541Google Scholar
  90. Steinert CP, Goutier I, Gutmann O, Sandmaier H, Messner S, Daub M, De Heij B, Zengerle R (2003) An improved 24 channel picoliter dispenser based on direct liquid displacement. In: International conference on solid-state sensors actuators microsystems, 376–379Google Scholar
  91. Sugiura S, Nakajima M, Iwamoto S, Seki S (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566CrossRefGoogle Scholar
  92. Sui G, Leu MC (2003) Investigation of layer thickness and surface roughness in rapid freeze prototyping. ASME J Manuf Sci Eng 125:556–563CrossRefGoogle Scholar
  93. Sweet RG (1965) High frequency recording with electrostatically deflected ink jets. Rev Sci Instrum 36:131–136CrossRefGoogle Scholar
  94. Switzer GL (1991) A versatile system for stable generation of uniform droplets. Rev Sci Instrum 62:2765–2771CrossRefGoogle Scholar
  95. Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Packag Manuf 25:26–33CrossRefGoogle Scholar
  96. Takahashi S, Kitagawa H, Tomikawa Y (2002) A study of liquid dispensing head using fluidic inertia. Jpn J Appl Phys 41:3442–3445CrossRefGoogle Scholar
  97. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  98. Tan YC, Collins J, Lee AP (2003) Controlled fission of droplet emulsion in bifurcating microfluidic channels. In: International conference on solid-state sensors actuators microsystem, 28–31Google Scholar
  99. Tan ZW, Teo SGG, Hu J (2008) Ultrasonic generation and rotation of a small droplet at the tip of a hypodermic needle. J Appl Phys 104:104902-1-5Google Scholar
  100. Tseng FG, Linder C, Kim CJ, Ho CM (1996) Control of mixing with micro injectors for combustion application. In: Proceedings of MEMS ASME IMECE, 183–197Google Scholar
  101. Tseng FG, Kim CJ, Ho CM (1998) A microinjector free of satellite drops and characterization of the ejected droplets. Symp Appl Micro-Fabr Fluid Mech 89-95Google Scholar
  102. Tseng FG, Kim CJ, Ho CM (1998) A novel microinjector with virtual chamber neck. In: Proceedings of international workshop on MEMS, 57–62Google Scholar
  103. Tseng FG, Kim CJ, Ho CM (2002a) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part i: concept, design, and model. J Microelectromech Syst 11:427–436CrossRefGoogle Scholar
  104. Tseng FG, Kim CJ, Ho CM (2002b) A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops—part ii: fabrication, implementation, and characterization. J Microelectromech Syst 11:437–447CrossRefGoogle Scholar
  105. Ulmke H, Wriedt T, Bauckhage K (2001) Piezoelectric droplet generator for the calibration of particle-sizing instruments. Chem Eng Technol 24:265–268CrossRefGoogle Scholar
  106. Vaught JL, Cloutier FL, Donald DK, Meyer JD, Tacklind CA, Taub HH (1984) Thermal ink jet printer. US patent 4,490,728Google Scholar
  107. Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26:3716–3724CrossRefGoogle Scholar
  108. Wu H, Wheeler A, Zare RN (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc Natl Acad Sci USA 101:12809–12813CrossRefGoogle Scholar
  109. Wu HC, Lin HJ, Hwang WS (2005) A numerical study of the effect of operating parameters on drop formation in a squeeze mode inkjet device. Model Simul Mater Sci Eng 13:17–34CrossRefGoogle Scholar
  110. Wu L, Li GP, Xu W, Bachman M (2006) Droplet formation in microchannels under static conditions. Appl Phys Lett 89:144106-1-3Google Scholar
  111. Yuan S, Zhou Z, Wang G, Liu C (2003) MEMS-based piezoelectric array microjet. Microelectron Eng 66:767–772CrossRefGoogle Scholar
  112. Zhang M, Ma O, Diao X (2006) Dynamics modeling and analysis of inkjet technology-based oligo DNA microarray spotting. IEEE Trans Autom Sci Eng 3:159–168CrossRefGoogle Scholar
  113. Zhao YX, Li HX, Ding H, Xiong YL (2005) Integrated modelling of a time-pressure fluid dispensing system for electronics manufacturing. Int J Adv Manuf Technol 26:1–9CrossRefGoogle Scholar
  114. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7:55–63CrossRefGoogle Scholar
  115. Zoltan SI (1972) Pulsed droplet ejecting system. US patent 3,683,212Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Robotics and Mechatronics Laboratory, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied ScienceThe George Washington UniversityWashingtonUSA

Personalised recommendations