Skip to main content
Log in

Modeling and analysis of a 2-DOF bidirectional electro-thermal microactuator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, a four hot-arm U-shape electro-thermal actuator that can achieve bidirectional motion in two axes is introduced. By selectively applying voltage to different pairs of its four arms, the device can provide actuation in four directions starting from its rest position. It is shown that independent in-plane and out-of-plane motions can be obtained by tailoring the geometrical parameters of the system. The lumped model of the microactuator was developed using electro-thermal and thermo-mechanical analyses and validated using finite element simulations. The device has been fabricated using PolyMUMPs and experimental results are in good agreement with the theoretical predictions. Total in-plane deflections of 4.8 μm (2.4 μm in either direction) and upward out-of-plane deflections of 8.2 μm were achieved at 8 V of input voltage. The large achievable deflections and the higher degree-of-freedom of the proposed device compared to its counterparts, foresee its use in diverse MEMS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Atre A (2006) Analysis of out-of-plane thermal microactuators. J Micromech Microeng 16(2):205–213

    Article  Google Scholar 

  • Burns DM, Bright VM (1997) Design and performance of a double hot arm polysilicon thermal actuator. In: Proc SPIE int soc opt eng. Austin, TX, USA, pp 296–306

  • Cao A, Kim J, Lin L (2007) Bi-directional electrothermal electromagnetic actuators. J Micromech Microeng 17(5):975–982

    Article  Google Scholar 

  • Carter J, Cowen A, Hardy B, Mahadevan R, Stonefield M, Wilcenski S (2005) POLYMUMPs design handbook revision v11.0. http://www.memscap.com/mumps/documents, mEMSCAP Inc.

  • Chen WC, Chu CC, Hsieh J, Fang W (2003) A reliable single-layer out-of-plane micromachined thermal actuator. Sens Actuators A Phys A103:48–58

    Article  Google Scholar 

  • Chronis L, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 4(14):857–863

    Article  Google Scholar 

  • Comtois JH, Bright VM (1997) Applications for surface-micromachined polysilicon thermal actuators and arrays. Sens Actuators A Phys A58:19–25

    Article  Google Scholar 

  • Comtois CH, Bright VM, Phipps MW (1995) Thermal microactuators for surface-micromachining processes. In: Proc SPIE int soc opt eng. Austin, TX, USA, pp 10–21

  • Cowan WD, Bright VM (1997) Vertical thermal actuators for micro-opto-electro-mechanical systems. In: Proc SPIE int soc opt eng. Austin, TX, USA, pp 127–146

  • Deladi S, Krijnen G, Elwenspoek MC (2004) Parallel-beams/lever electrothermal out-of-plane actuator. Microsyst Technol 10:393–399

    Article  Google Scholar 

  • Elms DG (1970) Linear elastic analysis. B. T. Batsford Ltd, London

    Google Scholar 

  • Fraser J, Hubbard T, Kujath M (2006) Theoretical and experimental analysis of an off-chip microgripper. Can J Electr Comput Eng 31:77–81

    Article  Google Scholar 

  • Guckel H, Klein J, Christenson T, Skrobis K, Laudon M, Lovell EG (1992) Thermo-magnetic metal flexure actuators. In: IEEE solid-state sensor and actuator workshop, New York, NY, USA, pp 73–75

  • Huang QA, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64–70

    Article  MathSciNet  Google Scholar 

  • Lerch P, Slimane CK, Romanowicz B, Renaud P (1996) Modelization and characterization of asymmetrical thermal micro-actuators. J Micromech Microeng 6(1):134–137

    Article  Google Scholar 

  • Liao KM, Chueh CC, Chen R (2002) A novel electro-thermally driven bi-directional microactuator. In: Proc 2002 intal symp on micromechatronics and human science, Nagoya, Japan, pp 267–274

  • Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sens Actuators A Phys A55:35–41

    Article  Google Scholar 

  • Pai M, Tien NC (1999) Operating principles of an electrothermal vibrometer for optical switching applications. In: Proc SPIE int soc opt eng, Santa Clara, CA, USA, pp 124–130

  • Pan CH, Chang CL, Chen YK (2005) Design and fabrication of an electro-thermal microactuator with multidirectional in-plane motion. J Microlithogr Microfabr Microsyst 4:1–15

    Article  Google Scholar 

  • Venditti R, Lee JSH, Sun Y, Li D (2006) An in-plane, bi-directional electrothermal MEMS actuator. J Micromech Microeng 16(10):2067–2070

    Article  Google Scholar 

  • Wu CT, Hsu W (2002) An electro-thermally driven microactuator with two dimensional motion. Microsyst Technol 8:47–50

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13(2):312–322

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2004) Design and modeling of a MEMS bidirectional vertical thermal actuator. J Micromech Microeng 14(7):841–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Nieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbuken, C., Topaloglu, N., Nieva, P.M. et al. Modeling and analysis of a 2-DOF bidirectional electro-thermal microactuator. Microsyst Technol 15, 713–722 (2009). https://doi.org/10.1007/s00542-009-0789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0789-2

Keywords

Navigation