Skip to main content
Log in

Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we developed a hermetic wafer level packaging for MEMS devices. Au–Sn eutectic bonding technology in a relatively low temperature is used to achieve hermetic sealing, and the vertical through-hole via filled with electroplated copper for the electrical connection is also used. The MEMS package has the size of 1 mm × 1 mm × 700 μm, and a square loop Au–Sn metallization of 70 μm in width for hermetic sealing. The robustness of the package is confirmed by several tests such as shear strength test, reliability tests, and hermeticity test. The reliability issues of Au–Sn bonding technology, and copper through-wafer interconnection are discussed, and design considerations to improve the reliability are also presented. By applying O2 plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface. The mechanical effects of copper through-vias are also investigated numerically and experimentally. Several factors which could induce via hole cracking failure are investigated such as thermal expansion mismatch, via etch profile, copper diffusion phenomenon, and cleaning process. Alternative electroplating process is suggested for preventing Cu diffusion and increasing the adhesion performance of the electroplating process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aithal RK, Yenamandra S, Gunasekaran RA, Coane P, Varahramyan K (2006) Electroless copper deposition on silicon with titanium seed layer. Mater Chem Phys 98(1):95–102. doi:10.1016/j.matchemphys.2005.08.079

    Article  Google Scholar 

  • Bracht M (2004) Copper related diffusion phenomena in germanium and silicon. Mater Sci Semicond Process 7:113–124. doi:10.1016/j.mssp.2004.06.001

    Article  Google Scholar 

  • Burkett SL, Qiao X, Temple D, Stoner B, McGuire G (2004) Advanced processing techniques for through-wafer interconnects. J Vac Sci Technol B 22:248–256. doi:10.1116/1.1642643

    Article  Google Scholar 

  • Cheng YT, Lin L, Najafi K (2000) Localized silicon fusion eutectic bonding MEMS fabrication packaging. J Microelectromech Syst 9:3–8

    Article  Google Scholar 

  • Cheng YT, Hsu W, Najafi K, Nguyen CTC, Lin L (2002) Vacuum packaging technology using localized aluminum/silicon-to-glass bonding. J Microelectromech Syst 11:556–565. doi:10.1109/JMEMS.2002.802903

    Article  Google Scholar 

  • Gardner DS, Onuki J, Kudoo K, Misawa Y, Vu QT (1995) Encapsulated copper interconnection devices using sidewall barriers. Thin Solid Films 262:104–119. doi:10.1016/0040-6090(95)05838-9

    Article  Google Scholar 

  • Gooch R, Schimert T (2003) Low-cost wafer level vacuum packaging for MEMS. MRS Bull 28:55–59

    Google Scholar 

  • Harz M, Engelke H (1996) Curvature changing or flattering of anodically bonded silicon and borosilicate glass. Sens Actuat A 55:201–209. doi:10.1016/S0924-4247(97)80079-9

    Article  Google Scholar 

  • Itoh T, Okada H, Takagi H, Maeda R, Suga T (2003) Room temperature vacuum sealing using surface activated bonding method. In: The 12th international conference on solid states sensors, actuators and Microsystems, Boston, pp 1828–1831

  • Ivey D (1998) Microstructural characterization of Au/Sn solder for packaging in optoelectronic applications. Micron 29:281–287. doi:10.1016/S0968-4328(97)00057-7

    Article  Google Scholar 

  • Ko WH, Suminto JT, Yeh GJ (1985) Bonding techniques for microsensors. In: Micromachining and micropackaging of transducers, Elsevier, Amsterdam, pp 41–61

  • Lee M, Kang SJ, Jung KD, Choa S, Cho YC (2005) A high yield rate MEMS gyroscope with a packaged SiOG process. J Micromech Microeng 15:2003–2010. doi:10.1088/0960-1317/15/11/003

    Article  Google Scholar 

  • Li G, Tseng A (2001) Low stress packaging of a micromachined accelerometer. IEEE Trans Electron Packag Manuf 24:18–25. doi:10.1109/6104.924788

    Article  Google Scholar 

  • Li B, Sullivan TD, Lee TC, Badami D (2004) Reliability challenges for copper interconnects. Microelectron Reliab 44:365–380. doi:10.1016/j.microrel.2003.11.004

    Article  Google Scholar 

  • Mack S, Baumann H, Gösele U, Werner H, Schlögl R (1997) Analysis of bonding-related gas enclosure in micromachined cavities sealed by silicon wafer bonding. J Electrochem 144:1106–1110. doi:10.1149/1.1837540

    Article  Google Scholar 

  • Matijasevic GS, Lee CC, Wang CY (1993) Au–Sn alloy phase diagram and properties related to its use as a bonding medium. Thin Solid Films 223:276–287. doi:10.1016/0040-6090(93)90533-U

    Article  Google Scholar 

  • Mercado L, Kuo S, Lee TY, Lee R (2005) Analysis of RF MEMS switch packaging process for yield improvement. IEEE Trans Adv Packag 28:34–41. doi:10.1109/TADVP.2004.841654

    Article  Google Scholar 

  • Okamoto H, Massalski TB (1987) Phase diagram of binary gold alloys. In: ASM international, metals, Park, Ohio, pp 278–289

  • Roth A (1976) Vacuum technology. North-Holland Publishing, Amsterdam

    Google Scholar 

  • Russell SW, Rafalski SA, Spreitzer RL, Li J, Moinpour M, Moghadam M, Alford TL (1995) Enhanced adhesion of copper to dielectrics via titanium and chromium additions and sacrificial reactions. Thin Solid Films 262:154–167. doi:10.1016/0040-6090(94)05812-1

    Article  Google Scholar 

  • Sasaki J, Itoh M, Tamanuki T, Hatakeyama H, Kitamura S, Shimoda T, Kato T (2001) Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au–Sn solder bumps. IEEE Trans Adv Packag 24(2):569–575. doi:10.1109/6040.982846

    Article  Google Scholar 

  • Seibt M, Hedemann H, Istratov AA, Riedel F, Sattler A, Schroter W (1999) Structural and electrical properties of metal silicide precipitates in silicon. Phys Status Solidi (a) 171:301–310. doi:10.1002/(SICI)1521-396X(199901)171:1<301::AID-PSSA301>3.0.CO;2-P

    Article  Google Scholar 

  • Tsau G, Spearing S, Schmidt M (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11:641–647. doi:10.1109/JMEMS.2002.805214

    Article  Google Scholar 

  • Wang C, Lee C (1992) An eutectic bonding technology at a temperature below the eutectic point. In: Proceedings of the 42nd ECTC conference, pp 502–507

  • Zakel E, Gwiasda J, Kloeser J, Eldring J, Engelmann G, Reichl H (1994) Fluxless flip chip assembly on rigid and flexible polymer substrates using the Au–Sn metallurgy. In: Proceedings of 1994 IEMT Symposium, pp 177–184

  • Zhang Z, Raskin J (2005) Low-temperature wafer bonding: a study of void formation and influence on bonding strength. J Micromech Microeng 14:368–382

    Google Scholar 

Download references

Acknowledgment

This work was supported by Joint Research Program “MCP Core Technologies for the Next Generation” from Ministry of Knowledge Economy in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hoon Choa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choa, SH. Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect. Microsyst Technol 15, 677–686 (2009). https://doi.org/10.1007/s00542-009-0788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0788-3

Keywords

Navigation