Skip to main content
Log in

Electrothermoelastic modeling of MEMS gripper

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The design of many thermal Microelectromechanical (MEMS) actuators is often based on finite element analysis, but lacks analytical insight. In this paper we report a novel electro-thermal microgripper and a comprehensive thermal modeling of a general 5 lineshape microbeam’s actuator using 1-D steady state heat equations. Because of the variety of microgripper fabrication technologies and their applications, different thermal boundary conditions are considered for lifted off and attached grippers. Parametric and nonparametric electrothermomechanical identification models for silicon on insulator microgripper, fabricated on 100 μm device layer, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ballandars S, Basrour S (1997) Microgrippers fabricated by LIGA technique. Sens Actuators A Phys 58:265–272

    Article  Google Scholar 

  • Bruno B, Frank L, Dereje A, Edward K, Hossain M, Popa D (2005) Method for determining a dynamical state-space model for control of thermal MEMS devices. JMEMS 14(5):962–970

    Google Scholar 

  • Gallis M, Torczynski J, Rader D (2007) A computational investigation of noncontinuum gas-phase heat transfer between a heated microbeam and the adjacent ambient substrate. Sens Actuators A Phys 134(1):57–68. doi:10.1016/j.sna.2006.05.003

    Article  Google Scholar 

  • Geretovszky Z, Kelemen L, Piglmayer K (1996) Temperature distribution in multilayers covered by liquid layer and processed by focused laser beam. Appl Surf Sci 106:422–428. doi:10.1016/S0169-4332(96)00421-7

    Article  Google Scholar 

  • Hickey R, Sameoto D, Hubbard T, Kujath M (2003) Time and frequency response of two-arm micromachined thermal actuator. J Micromech Microeng 13:40–46. doi:10.1088/0960-1317/13/1/306

    Article  Google Scholar 

  • Huang Q-A, Lee NKS (1999) Analysis and design of polysiliconthermal flexure actuator. J Micromech Microeng 9:64–70. doi:10.1088/0960-1317/9/1/308

    Article  Google Scholar 

  • Jonsmann J, Sigmund O, Bouwstra S (1999) Compliant electro-thermal microactuators. In: Proceedings of the MEMS ’99, Orlando, FL, USA, pp 588–593

  • Kovalenko AD (1969) Thermoelasticity, basic theory and applications. Translated from USSR by Macvean DB, Alblas JB, Wolters-Noordhoff Publishing, Groningen

  • Lerch P, Slimane K, Romanowicz B, Renaud P (1996) Modelization and characterization of asymmetrical thermal microacuators. J Micromech Microeng 6:134–137. doi:10.1088/0960-1317/6/1/033

    Article  Google Scholar 

  • Li G, Huang Q, Li W-H (2008) A nodal analysis method for simulating the behavior of electrothermal microactuators. Microsyst Technol 14(1):119–129. doi:10.1007/s00542-007-0406-1

    Article  Google Scholar 

  • Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sens Actuators Phys A 55:35–41. doi:10.1016/S0924-4247(96)01247-2

    Article  Google Scholar 

  • Ljung L (1997) System identification toolbox for use with MATLAB (User’s guide) The MathWorks, Inc

  • Ljung L (1998) System Identification: theory for the users, 2nd edn. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  • Luo J, Flewitt A, Spearing S, Fleck N (2005) Comparison of microtweezers based on three lateral thermal actuator configurations. J Micromech Microeng 15:1294–1302. doi:10.1088/0960-1317/15/6/022

    Article  Google Scholar 

  • Mankame N, Ananthasuresh G (2001) Comprehensive thermal modeling and characterization of an electro-thermal-compliant microactuator. J Micromech Microeng 11:452–462. doi:10.1088/0960-1317/11/5/303

    Article  Google Scholar 

  • Mayyas M, Lee WH, Popa D, Shiakolas P, Zhang P, Stephanou H (2005) Comprehensive electrothermal modeling of a thermal microgripper. In: TEXMEMS. El-Paso, Texas, USA, September 2005

  • Mayyas M, Shiakolas P (2006) A study on the thermal behavior of electrothermal microactuators due to various voltage inputs. In: Proceedings of IMECE06, Paper No. IMECE2006-15321, Chicago, IL, USA, November 2006

  • Mayyas M, Zhang P, Lee WH, Shiakolas P, Popa D (2007) Design tradeoffs for electrothermal microgrippers. IEEE International Conference on Robotics and Automation, Rome, pp 10–14

    Google Scholar 

  • Yang Y, Shen K (2003) Nonlinear heat-transfer macromodeling for MEMS thermal devices. J Micromech Microeng 13:40–46. doi:10.1088/0960-1317/13/1/306

    Article  Google Scholar 

  • Polder D, Hove V (1971) Theory of radiative heat transfer between closely spaced bodies. Phys Rev B 4:3303–3314. doi:10.1103/PhysRevB.4.3303

    Article  Google Scholar 

  • Tsai Y, Lei S, Sudin H (2005) Design and analysis of planar compliant microgripper based on kinematic approach. J Micromech Microeng 15:143–156. doi:10.1088/0960-1317/15/1/022

    Article  Google Scholar 

Download references

Acknowledgments

This research was conducted at Texas Microfactory of ARRI and partially supported by the Office of Naval Research from Grant # N00014-05-1-0587. The authors would like to thank Prof. Dan Popa, Dr. Woo Ho Lee and Prof. Panos Shiakolas for their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mayyas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayyas, M., Stephanou, H. Electrothermoelastic modeling of MEMS gripper. Microsyst Technol 15, 637–646 (2009). https://doi.org/10.1007/s00542-008-0752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0752-7

Keywords

Navigation