Microsystem Technologies

, Volume 15, Issue 2, pp 333–340 | Cite as

The mechanics of polymer swelling on microcantilever sensors

Technical Paper

Abstract

This paper investigates the swelling mechanics of polymer capture layers integrated into piezoresistive cantilever biochemical sensors. A finite element model investigates mechanical deformations in a polymer layer affixed to a silicon microcantilever. The polymer swells during analyte absorption, inducing deformations in the silicon cantilever which are sensed by a piezoresistive sensor integrated into the cantilever. The highest sensitivity is predicted for short and wide cantilevers that are coated with stiff polymer whose thickness is twice that of the cantilever. While the polymer swelling induces the deformations, the silicon carries most of the load. When portions of the silicon beam are removed to introduce stress concentrations, the system sensitivity can increase by 18% compared to the cantilever without stress concentrations. This study of stress distributions in the cantilever system allows sensor optimization that considers the full 3D effects of polymer swelling mechanics.

References

  1. Baller MK, Lang HP, Fritz J, Gerber C, Gimzewski JK, Drechsler U et al (2000) A cantilever array-based artificial nose. Ultramicroscopy 82:1–9. doi:10.1016/S0304-3991(99)00123-0 CrossRefGoogle Scholar
  2. Bashir R, Gupta A, Neudeck GW, McElfresh M, Gomez R (2000) On the design of piezoresistive silicon cantilevers with stress concentration regions for scanning probe microscopy applications. J Micromech Microeng 10:483–491. doi:10.1088/0960-1317/10/4/301 CrossRefGoogle Scholar
  3. Begley MR, Utz M, Komaragiri U (2005) Chemo-mechanical interactions between adsorbed molecules and thin elastic films. J Mech Phys Solids 53:2119–2140. doi:10.1016/j.jmps.2005.03.006 CrossRefMathSciNetGoogle Scholar
  4. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933. doi:10.1103/PhysRevLett.56.930 CrossRefGoogle Scholar
  5. Boisen A, Thaysen J, Jensenius H, Hansen O (2000) Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy 82:11–16. doi:10.1016/S0304-3991(99)00148-5 CrossRefGoogle Scholar
  6. Budynas RG (1999) Advanced strength and applied stress analysis, 2nd edn. McGraw-Hill, BostonGoogle Scholar
  7. Burgreen D (1971) Elements of thermal stress analysis. C.P. Press, New YorkGoogle Scholar
  8. Chivukula V, Wang M, Ji H-F, Khaliq A, Fang J, Varahramyan K (2006) Simulation of SiO2-based piezoresistive microcantilevers. Sensors Actuators A 125:526–533. doi:10.1016/j.sna.2005.08.038 CrossRefGoogle Scholar
  9. Choudhury A, Hesketh PJ, Thundat T, Hu Z (2007) A piezoresistive microcantilever array for surface stress measurement: curvature model and fabrication. J Micromech Microeng 17:2065–2076. doi:10.1088/0960-1317/17/10/019 CrossRefGoogle Scholar
  10. Fagan BC, Tipple CA, Xue Z, Sepaniak MJ, Datskos PG (2000) Modification of micro-cantilever sesnsors with sol-gels to enhance performance and immobilize chemically selective phases. Talanta 53:599–608. doi:10.1016/S0039-9140(00)00533-6 CrossRefGoogle Scholar
  11. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E et al (2000) Translating biomolecular recognition into nanomechanics. Science 288:316–318. doi:10.1126/science.288.5464.316 CrossRefGoogle Scholar
  12. Goericke FT, King WP (2008) Modeling piezoresistive microcantilever sensor response to surface stress for biochemical sensors. IEEE Sens J. doi:10.1109/JSEN.2008.920706
  13. He JH, Li YF (2006) High sensitivity piezoresistive cantilever for biomolecular detection. J Phys Conf Ser 34:429–435. doi:10.1088/1742-6596/34/1/070 CrossRefGoogle Scholar
  14. Headrick JJ, Sepaniak MJ, Lavrik NV, Datskos PG (2003) Enhancing chemi-mechanical transduction in microcantilever chemical sensing by surface modification. Ultramicroscopy 97:417–424. doi:10.1016/S0304-3991(03)00069-X CrossRefGoogle Scholar
  15. Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn edn. Wiley, New YorkGoogle Scholar
  16. Lang HP, Hegner M, Gerber C (2005) Cantilever array sensors. Mater Today 8(4):30–36. doi:10.1016/S1369-7021(05)00792-3 CrossRefGoogle Scholar
  17. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantielver transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253. doi:10.1063/1.1763252 CrossRefGoogle Scholar
  18. Madou MJ (2002) Fundamentals of Microfabrication: the Science of Miniaturization, 2nd edn edn. CRC Press, LondonGoogle Scholar
  19. Raiteri R, Grattarola M, Butt H-J, Skladal P (2001) Micromechanical cantilever-based biosensors. Sensors Actuators B 79:115–126. doi:10.1016/S0925-4005(01)00856-5 CrossRefGoogle Scholar
  20. Rasmussen PA, Hansen O, Boisen A (2005) Cantilever surface stress sensors with single-crystalline silicon piezoresistors. Appl Phys Lett 86:203502CrossRefGoogle Scholar
  21. Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  22. Yang SM, Yin TI (2007) Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor. Sensors Actuators B 120:736–744. doi:10.1016/j.snb.2006.03.053 CrossRefGoogle Scholar
  23. Yang M, Zhang X, Vafai K, Ozkan CS (2003) High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J Micromech Microeng 13:864–872. doi:10.1088/0960-1317/13/6/309 CrossRefGoogle Scholar
  24. Wenzel MJ, Josse F, Heinrich SM, Yaz E, Datskos PG (2008) Sorption-induced static bending of microcantilevers coated with viscoelastic material. J Appl Phys 103(6):1–11. doi:10.1063/1.2902500 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations