Skip to main content
Log in

Chip-level integration of RF MEMS on-chip inductors using UV-LIGA technique

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a chip-level integration of radio-frequency (RF) microelectromechanical systems (MEMS) air-suspended circular spiral on-chip inductors onto MOSIS RF circuit chips of LNA and VCO using a multi-layer UV-LIGA technique including SU-8 UV lithography and copper electroplating. A high frequency simulation package, HFSS, was used to determine the layout of MEMS on-chip inductors with inductance values close to the target inductance values required for the RF circuit chips within the range of 10%. All MEMS on-chip inductors were successfully fabricated using a contrast enhancement method for 50 μm air suspension without any physical deformations. High frequency measurement and modeling of the integrated inductors revealed relatively high quality factors over 10 and self-resonant frequencies more than 15 GHz for a 1.44 nH source inductor and a 3.14 nH drain inductor on low resistivity silicon substrates (0.014 Ω cm). The post-IC integration of RF MEMS on-chip inductors onto RF circuit chips at a chip scale using a multi-layer UV-LIGA technique along with high frequency measurement and modeling demonstrated in this work will open up new avenues with the wider integration feasibility of MEMS on-chip inductors in RF applications for cost-effective prototype applications in small laboratories and businesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arcioni P, Castello R, Astis GD, Sacchi E, Svelto F (1998) Measurement and modeling of Si integrated inductors. IEEE Trans Instrum Meas 47(5):1372–1378

    Article  Google Scholar 

  • Carchon GJ, De Raedt E, Beyne E (2004) Wafer-level packaging technology for high-Q on-chip inductors and tansmission line. IEEE Trans Microw Theory Tech 52(4):1244–1251

    Article  Google Scholar 

  • Chang JYC, Abidi AA, Gaitan M (1993) Large suspended inductors on silicon and their use in a 2-μm CMOS RF amplifier. IEEE Electron Dev Lett 14(5):246–248

    Article  Google Scholar 

  • Chua CL, Fork DK, Van Schuylenbergh K, Lu JP (2003) Out-of-plane high-Q inductors on low-resistance silicon. J MEMS 12(6):989–995

    Google Scholar 

  • Dec A, Suyama K (2000) A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors. IEEE J Solid-State Circuits 35(8):1231–1237

    Article  Google Scholar 

  • Dodo H, Aoki Y, Hayama N, Fujii M, Yamaguchi Y, Sasaki Y, Ohba H, Hida H (2003) A low-power and variable-gain transceiver front-end chip for 5-GHz-band WLAN applications. Symposium Digest 2003 IEEE MTT-S International Microwave Symposium 3:1559–1562

    Article  Google Scholar 

  • Erben U, Sonmez E (2004) Fully differential 5 to 6 GHz low noise amplifier using SiGe HBT technology. Electron Lett 40(1):39–40

    Article  Google Scholar 

  • Jeong Y, Doh H, Jung S, Park DS, Lee J-B (2004) CMOS VCO & LNA implemented by air suspended on-chip RF MEMS LC. 2004 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS 2004) 373–376

  • Katehi LPB, Harvey JF, Brown E (2002) MEMS and Si micromachined circuits for high-frequency applications. IEEE Tran Microw Theory Tech 50(3):858–866

    Article  Google Scholar 

  • Kim CS, Park M, Kim C-H, Hyeon YC, Yu HK, Lee K, Nam KS (1998) A fully integrated 1.9-GHz CMOS low-noise amplifier. IEEE Microw Guided Wave Lett 8(8):293–295

    Article  Google Scholar 

  • Lu H, Pillans B, Lee J-B (2004) Micromachined on-chip high aspect ratio air core solenoid inductor for multi-GHz applications. Symposium Digest 2004 IEEE MTT-S International Microwave Symposium 2:881–884

    Google Scholar 

  • Lu H, Pillans B, Lee J-C, Kim K, Lee J-B (2007) High aspect ratio air core solenoid inductors using an improved UV-LIGA process with contrast enhancement material. Microsyst Technol 13(3–4):237–243

    Google Scholar 

  • Nishikawa K, Piernas B, Kamogawa K, Nakagawa T (2002) Compact LNA and VCO 3-D MMICs using commercial GaAs PHEMT technology for V-band single-chip TRX MMIC. Symposium Digest 2002 IEEE MTT-S International Microwave Symposium 3:1717–1720

    Google Scholar 

  • Park E-C, Choi Y-S, Yoon J-B, Hong S, Yoon E (2003) Fully integrated low phase-noise VCOs with on chip MEMS inductors. IEEE Tran Microw Theory Tech 51(1):289–296

    Article  Google Scholar 

  • Park DS-W, Kim K, Pillans B, Lee J-B (2004) PDMS-based pattern transfer process for the post-IC integration of MEMS onto CMOS chips. J Micromech Microeng 14(3):335–340

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS, Theory, Design, and Technology. Wiley, London

  • Reynolds SK, Floyd BA, Beukema TJ, Zwick TA (2003) Direct-conversion receiver integrated circuit for WCDMA mobile systems. IBM J Res Dev 47(2–3):337–353

    Article  Google Scholar 

  • Svelto F, Castello R (2002) A bond-wire inductor-MOS varactor VCO tunable from 1.8 to 2.4 GHz. IEEE Tran Microw Theory Tech 50(1):403–407

    Article  Google Scholar 

  • Tang C-C, Wu C-H, Liu S-I (2002) Miniature 3-D inductors in standard CMOS process. IEEE J Solid-State Circuits 37(4):471–480

    Article  Google Scholar 

  • Tilmans HAC, De Raedt W, Beyne E (2003) MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP. J Micromech Microeng 13(4):S139–S163

    Article  Google Scholar 

  • Vassiliou I, Vavelidis K, Georgantas T, Plevridis S, Haralabidis N, Kamoulakos G, Kapnistis C, Kavadias S, Kokolakis Y (2003) A single-chip digitally calibrated 5.15–5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN. IEEE J Solid-State Circuits 38(12):2221–2231

    Article  Google Scholar 

  • Woerlee PH, Knitel MJ, van Langevelde R, Klassen DBM, Tiemeijier LF, Scholten AJ, Duijnhoven ATAZ (2001) RF-CMOS performance trends. IEEE Trans Electron Dev 48(8):1776–1782

    Article  Google Scholar 

  • Yao JJ (2000) RF MEMS from a device perspective. J Micromech Microeng 10(4):R9–R38

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under the grant ECS-0296108. The authors would like to thank PVA TePla for equipment support (TePla 300 microwave plasma etch system). The supports of UTD clean room staffs and UTD Micro/Nano Devices and Systems Laboratory are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sang-Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D.SW., Jeong, Y., Lee, JB. et al. Chip-level integration of RF MEMS on-chip inductors using UV-LIGA technique. Microsyst Technol 14, 1429–1438 (2008). https://doi.org/10.1007/s00542-007-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-007-0532-9

Keywords

Navigation