Advertisement

Microsystem Technologies

, Volume 14, Issue 9–11, pp 1269–1277 | Cite as

On the simulation of molded micro components and systems

  • Albert AlbersEmail author
  • Hans-Georg Enkler
  • Pablo Leslabay
Technical Paper

Abstract

Regarding micro components and systems, experimental work for characterizing materials’ properties as well as components’ and systems’ behaviors have to be supplemented by numerical analyses. These analyses should cover component and system issues. On a component level, macroscopic approaches are extended by methods allowing consideration of the influence of components’ grain structures including possible defects. On a system level, the high tolerances accepted for the individual components due to production inaccuracy and their effects on the expected load distribution capability of the system are taken into account. This paper presents approaches for simulation of micro components and systems using the finite element method and multi body simulation. Methods to overcome the abovementioned issues will be shown, as well as the effects of grain structure on the stress distribution in the individual components.

Keywords

Contact Force Planetary Gear Response History Gear Train Planetary Gear Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are grateful for the support provided by German Research Foundation (DFG - Deutsche Forschungsgemeinschaft) within the scope of Collaborative Research Center 499 “Design, Production and Quality Assurance of Molded Micro Components made of Metallic and Ceramic Materials”.

References

  1. Zienkiewicz OC, Taylor RL (2005) The finite element method, 6th edn. Butterworth, LondonGoogle Scholar
  2. Shabana AA (2001) Computational dynamics, 2nd edition, Wiley, LondonGoogle Scholar
  3. Fröhlich A, Weyer S, Metz D, Brückner-Foit A, Albers A (2001) Investigations on the reliability of FEA calculations on the microscopic scale, technical. In: Proceedings of the 2001 international conference on computational nanoscience, Hilton Head Island, South Carolina (USA)Google Scholar
  4. McMeeking RM, Hwang SC (1999) A finite element model of ferroelastic polycrystals. International Journal of Solids and Structures 36:1541–1556zbMATHCrossRefGoogle Scholar
  5. Voronoi MG (1908) Nouvelles applications des parametres continus a la theroie des formes quadratiques. J Reine u Angew Math 198–287Google Scholar
  6. Albers A, Metz D (2005) Modeling and validation in design. In: Baltes H, Brand O, Fedder GK, Hierold Ch, Korvink JG, Tabata O, Löhe D, Haußelt J (eds) Microengineering of metals and ceramics, Part I Wiley-VCH, WeinheimGoogle Scholar
  7. Nygårds M (2003) Microstructural finite element modeling of metals. Royal Institute of Technology, SwedenGoogle Scholar
  8. Albers A, Metz D (2006) Influence of the microstructure on the strain of micro components, microsystem technologies, vol.12. Springer, Heidelberg, pp 685–690Google Scholar
  9. Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley, LondonGoogle Scholar
  10. Reher FR (1998) Simulation der rekristallisation auf der basis orientierter keimbildung und orientierten keimwachstums mittels modifizierter zellularer automaten. VDI Verlag GmbH, DüsseldorfGoogle Scholar
  11. Bäker M (2002) Numerische methoden in der materialwissenschaft, braunschweiger schriften zum Maschinenbau, Band 8, Braunschweig, 1. AuflageGoogle Scholar
  12. Bunge HJ (1982) Texture analysis in materials science. Butterworths, LondonGoogle Scholar
  13. Albers A, Enkler H-G (2007)a Methods for the Simulation of Micro Components with respect to the Grain Structure. In: Proceedings of the ASME 2007 international design engineering technical conferences and computers and information in engineering conference, Las Vegas, Nevada, USAGoogle Scholar
  14. Albers A, Enkler H-G (2007)b Modeling of complex three-dimensional grain structures. Proceedings of the NAFEMS world congress. Vancouver, CanadaGoogle Scholar
  15. Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  16. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, LondonGoogle Scholar
  17. Belytschko T (1976) A survey of numerical methods and computer programs for dynamic structural analysis. Nucl Eng Des 37(1):23–34CrossRefMathSciNetGoogle Scholar
  18. Belytschko T (1983) An overview of semidiscretization and time integration procedures. In: Belytschko T, Hughes TJR (eds) computational methods for transient analysis. North-Holland, Amsterdam, pp 1–65Google Scholar
  19. Crisfield MA (1991) Non-linear Finite element analysis of solids and structures, vol. 1 and 2, Wiley, UKGoogle Scholar
  20. Courant R, Friedrichs KO, Lewy H (1928) Über die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen 100:32–74zbMATHCrossRefMathSciNetGoogle Scholar
  21. Isaacson E, Keller HB (1966) Analysis of numerical methods. Wiley, New YorkzbMATHGoogle Scholar
  22. Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 5(EM3):67–94Google Scholar
  23. Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283–292CrossRefGoogle Scholar
  24. Hughes TJR (1983) Analysis of transient algorithms with particular reference to stability behaviour. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis. North-Holland, Amsterdam, pp 67–155Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Albert Albers
    • 1
    Email author
  • Hans-Georg Enkler
    • 1
  • Pablo Leslabay
    • 1
  1. 1.Institute of Product Development (IPEK)University of Karlsruhe (TH)KarlsruheGermany

Personalised recommendations