Skip to main content
Log in

Evaluation of eutectic bond strength and assembly of Al-based microfluidic structures

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Metal-based microscale heat exchangers have potential advantages over similar Si-based devices. Bonding and assembly are critical for building functional metal-based microfluidic devices from metallic high-aspect-ratio microscale structures (HARMS). In this paper, we report eutectic bonding of Al specimens with Al–Ge thin film intermediate layers. Quantitative evaluation of bond strengths was carried out as a function of various bonding parameters, including bonding temperature, applied pressure, and Al–Ge intermediate layer thickness. With this eutectic bonding strategy, successful assembly of multilayered Al microfluidic structures is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Tuckerman DB, Pease RFW (1981) High performance heat sinking for VLSI. IEEE Elect Dev Lett 2(5):126

    Google Scholar 

  • Madou M (2000) Fundamentals of microfabrication. CRC Press, Boca Raton

    Google Scholar 

  • Mudawar I (2001) Assessment of high heat flux thermal management schemes. IEEE Trans Compon Pack Technol 24:122

    Article  Google Scholar 

  • Kohl MJ, Abdel-Khalik SI, Jeter SM, Sadowski DL (2005) An experimental investigation of microchannel flow with internal pressure measurements. Int J Heat Mass Transf 48:1518

    Article  Google Scholar 

  • Lee PS, Garimella SV, Liu D (2005) Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf 48:1688

    Article  Google Scholar 

  • Becker EW, Ehrfeld W, Munchmeyer D, Betz H, Heuberger A, Pongratz S, Glashauser W, Michel HJ, Siemens VR (1982) Production of separation-nozzle systems for uranium enrichment by a combination of X-ray-lithography and galvanoplastics. Naturwissenschaften 69:520

    Article  Google Scholar 

  • Harris C, Despa M, Kelly KW (2000) Design and fabrication of a cross flow micro heat exchanger. J MEMS 9:502

    Google Scholar 

  • Arias F, Oliver SRJ, Xu B, Homlin RE, Whitesides GM (2001) Fabrication of metallic heat exchangers using sacrificial polymer mandrils. J MEMS 10:107

    Google Scholar 

  • Cao DM, Meng WJ (2004) Microscale compression molding of Al with surface engineered LiGA inserts. Microsyst Technol 10:662–670

    Article  Google Scholar 

  • Cao DM, Jiang J, Meng WJ, Jiang JC, Wang W (2007) Fabrication of high-aspect-ratio microscale Ta mold inserts with micro-electrical-discharge-machining. Microsyst Technol 13:503–510

    Article  Google Scholar 

  • Cao DM, Wang T, Feng B, Meng WJ, Kelly KW (2001) Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications. Thin Solid Films 398/399:553

    Article  Google Scholar 

  • Cao DM, Meng WJ, Simko SJ, Doll GL, Wang T, Kelly KW (2003) Conformal deposition of Ti-containing hydrocarbon coatings over LiGA fabricated high-aspect-ratio micro-scale structures and tribological characteristics. Thin Solid Films 429:46

    Article  Google Scholar 

  • Cao DM, Jiang J, Yang R, Meng WJ (2006) Fabrication of high-aspect-ratio microscale mold inserts by parallel μEDM. Microsyst Technol 12:839

    Google Scholar 

  • Nese M, Hanneborg A (1993) Anodic bonding of silicon to silicon-wafers coated with aluminum, silicon-oxide, polysilicon, or silicon-nitride. Sensor Actuat A 37(8):61–67

    Article  Google Scholar 

  • Harendt C, Hofflinger B, Graf HG et al (1991) Silicon direct bonding for sensor applications—characterization of the bond quality. Sensor Actuat A 25:87–92

    Article  Google Scholar 

  • Hunt CE, Desmond CA, Ciarlo DR, Benett WJ (1991) Direct bonding of micromachined silicon wafers for laser diode heat exchanger applications. J Micromech Microeng 1(3):152–156

    Article  Google Scholar 

  • Hanneborg A, Nese M, Ohlckers P (1991) Silicon-to-silicon anodic bonding with a borosilicate glass layer. J Micromech Microeng 1(3):139–144

    Article  Google Scholar 

  • Mei F, Jiang J, Meng WJ (2007) Eutectic bonding of Al-based high aspect ratio microscale structures. Microsyst Technol 13:723–730

    Article  Google Scholar 

  • Meng WJ, Curtis TJ (1997) Inductively coupled plasma assisted physical vapor deposition of titanium nitride coatings. J Electron Mater 26:1297

    Article  Google Scholar 

  • Meng WJ, Curtis TJ, Rehn LE, Baldo PM (1999) Temperature dependence of inductively coupled plasma assisted deposition of titanium nitride coatings. Surf Coat Technol 120/121:206

    Article  Google Scholar 

  • Massalski TB (ed) (1986) Binary alloy phase diagrams. ASM, Metals Park, p 116

  • Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials. Wiley, New York

    Google Scholar 

  • Jiang J, Meng WJ, Sinclair GB, Lara-Curzio E (2007) Further experiments and modeling for microscale compression molding of metals at elevated temperatures. J Mater Res (in press)

Download references

Acknowledgments

We gratefully acknowledge partial project support from NSF through grants DMI-0400061 and DMI-0556100, and from Louisiana State Board of Regents through contract LEQSF(2004-07)-RD-B-06. Technical assistance by Mr. D. V. Muthyala, Mr. M. Alam, Prof. G. Li, and Prof. D. Nikitopoulos is acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, F., Jiang, J. & Meng, W.J. Evaluation of eutectic bond strength and assembly of Al-based microfluidic structures. Microsyst Technol 14, 99–107 (2008). https://doi.org/10.1007/s00542-007-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-007-0407-0

Keywords

Navigation