Skip to main content
Log in

Effect of interfacial SiO2 thickness for low temperature O2 plasma activated wafer bonding

  • Technical paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

It was experimentally demonstrated that bonding strength strongly depends on the total SiO2 thickness near the bonding interface for a given O2 plasma surface activation. Systematic experiments of Si/SiO2 and SiO2/SiO2 wafer bonding are performed for analyzing the evolution of the bonding surface energy with the interfacial oxide thickness. Optimum plasma exposure time increases with the interfacial SiO2 thickness to achieve the maximum bonding strength in SiO2/SiO2 or SiO2/Si. An optimal process option for plasma activated SiO2/SiO2 wafer bonding is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amirfeiz P, Bengtsson S, Bergh M, Zanghellini E, Börjesson L (2000) Formation of silicon structures by plasma activated wafer bonding. J Electrochem Soc 147:2693–2698

    Article  Google Scholar 

  • Banerjee K, Souri SJ, Kapur P, Saraswat KC (2001) 3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc IEEE 89:602–633

    Article  Google Scholar 

  • Bertholet Y, Iker F, Raskin JP and Pardoen T (2004) Steady-state measurement and modeling of wafer bonding failure resistance. Sens Actuators A 110:157–163

    Article  Google Scholar 

  • Bruel M (1995) Silicon on insulator material technology. Electron Lett 31:1201–1202

    Article  Google Scholar 

  • Choi K, Ghosh S, Lim J, Lee CM (2003) Removal efficiency of organic contaminants on Si wafer by dry cleaning using UV/O3 and ECR plasma. Appl Surf Sci 206:355–364

    Article  Google Scholar 

  • Dessein K, Anil Kumar PS, Németh S, Delaey L, Borghs G and De Boeck J (2001) The vacuum wafer bonding technique as an alternative method for the fabrication of metal/semiconductor heterostructures. J Cryst Growth 227–228:906–910

    Article  Google Scholar 

  • Goustouridis D, Minoglou K, Kolliopoulou S, Chatzandroulis S, Morfouli P, Normand P, Tsoukalas D (2004) Low temperature wafer bonding for thin film layer transfer. Sens Actuators A 110:401–406

    Article  Google Scholar 

  • Hahn PO, Lampet I, Schnegg A (1988) In: Pantelides ST, Lucovsky G (eds) SiO2 and its interfaces: symposium, materials research society, 30 November–5 December 1987, Pittsburgh, pp 247–252

  • Henttinen K, Suni I, Lau SS (2000) Mechanically induced Si layer transfer in hydrogen-implanted Si wafers. Appl Phys Lett 76:2370–2372

    Article  Google Scholar 

  • Hurley RE and Gamble HS (2003) Thin film sputtered silicon for silicon wafer bonding applications. Vacuum 70(2–3):131–140

    Article  Google Scholar 

  • Kräuter G, Schumacher A, Gösele U (1998) Low temperature silicon direct bonding for application in micromechanics: bonding energies for different combinations of oxides. Sens Actuators A70:271–275

    Article  Google Scholar 

  • Lai SI, Lin HY, Hu CT (2004) Effect of surface treatment on wafer direct bonding process. Mater Chem Phys 83:265–272

    Article  Google Scholar 

  • Pasquariello D, Lindeberg M, Hedlund C, Hojrt K (2000) Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding. Sens Actuators 82:239–244

    Article  Google Scholar 

  • Pasquariello D, Hedlund C and Hjort K (2000) Oxidation and induced damage in oxygen plasma in situ wafer bonding. J Electrochem Soc 147(7):2699–2703

    Article  Google Scholar 

  • Suni T, Henttinen K, Suni I, Mäkinen J (2002) Effects of plasma activation on hydrophilic bonding of Si and SiO2. J Electrochem Soc 149:G348–G351

    Article  Google Scholar 

  • Tong G, Cha QY, Gafiteanu R, Gösele U (1994) Low temperature wafer direct bonding. J Microelectromech Syst 3:29–35

    Article  Google Scholar 

  • Tong QY, Kim WJ, Lee TH, Gösele U (1998) Low vacuum wafer bonding, Electrochem. Solid State Lett 1(1):52–53

    Article  Google Scholar 

  • Wei BY, Cher MT, Su SD, Sharon MLN (2004) Influence of applied load on vacuum wafer bonding at low temperature. Sens Actuators A 115:67–72

    Article  Google Scholar 

  • Williams JS, Short KT, Petravic M, Svensson BG (1997) Oxidation of silicon by low energy oxygen ions. Nucl Instrum Methods Phys Res B 121:24–29

    Article  Google Scholar 

  • Zhang X, Raskin JP (2004) Investigation on the uniformity of surface energy is silicon direct bonding technique. J Electrochem Soc 151(9):G568–G573

    Article  Google Scholar 

  • Zhang X, Raskin JP (2004) Low-temperature wafer bonding optimal O2 plasma surface pretreatment time. Electrochem Solid State Lett 7:G172–G174

    Article  Google Scholar 

  • Zhang X, Raskin JP (2005) Low temperature wafer bonding: a study of void formation and influence on bonding strength. J Microelectromech Syst (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Olbrechts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbrechts, B., Zhang, X., Bertholet, Y. et al. Effect of interfacial SiO2 thickness for low temperature O2 plasma activated wafer bonding. Microsyst Technol 12, 383–390 (2006). https://doi.org/10.1007/s00542-005-0038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-005-0038-2

Keywords

Navigation