Skip to main content
Log in

Effects of sevoflurane on cardiovascular dynamics, coronary circulation and myocardial metabolism in dogs

  • Original Articles
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

The effects of 2.5% and 5% of sevoflurane anesthesia on hemodynamics and myocardial metabolism were studied in pentobarbital-pancuronium anesthetized dogs. The interaction between nicardipine and 2.5% sevoflurane was also examined. Sevoflurane produced dose-dependent (P<0.05 toP<0.01) decreases in systolic arterial pressure (SAP), heart rate (HR), cardiac index (CI), left ventricular minute work index (LVMWI), maximum rate of rise of left ventricular pressure (LV dP/dt), the time constant of fall in isovolumic left ventricular pressure (T) and systemic vascular resistance (SVR), whereas stroke volume index (SVI) and left ventricular end-diastolic pressure (LVEDP) remained unchanged. Central venous pressure (CVP) was significantly (P<0.05) increased at 5%. Myocardial oxygen consumption\(M\dot V_{O_2 } \), and myocardial lactate extraction ratio (ML ext) were decreased in a dose-dependent manner (P<0.05). Myocardial oxygen extraction ratio (MO 2 ext) was significantly (P<0.01) decreased at 5%. The ratio of the left ventricular minute work index to myocardial oxygen consumption\(LVMWI/M\dot V_{O_2 } \), i.e., left ventricular efficiency was significantly decreased only at 5% (P<0.05). Coronary sinus blood flow (CSBF) was significantly (P<0.05) decreased only at 2.5% sevoflurane and coronary vascular resistance (CVR) was significantly (P<0.01) decreased only at 5% sevoflurane. The ratio of CSBF to CO (CSBF/CO) showed a tendency to increase as sevoflurane concentrations were increased. Nicardipine (0.01 mg·kg−1) administered intravenously under 2.5% sevoflurane caused significant (P<0.05 toP<0.01) decreases in SAP, HR, LV dP/dt, SVR, and CVR, and increases in CVP, SVI, CI, and CSBF (P<0.05 toP<0.01). CSBF/CO remained unchanged.\(M\dot V_{O_2 } \), MO 2 ext, and ML ext were significantly (P<0.05 toP<0.01) decreased.\(LVMWI/M\dot V_{O_2 } \) showed a tendency to increase. It is concluded that sevoflurane causes a rapidly and easily controlled cardiovascular depression and may not have unfavorable effects on coronary circulation and myocardial metabolism. Nicardipine exerts a synergistic myocardial depressant effect on sevoflurane, in terms of both cardiovascular dynamics and myocardial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallin RF, Regan BM, Napoli MD, Stern IJ: Sevoflurane: a new inhalational anesthetic agent. Anesth Analg 54 758–765, 1975

    Article  CAS  PubMed  Google Scholar 

  2. Holaday DA, Smith FR: Clinical characteristics and biotransformations of sevoflurane in healthy human volunteers. Anesthesiology 54:100–106, 1981

    Article  CAS  PubMed  Google Scholar 

  3. Imamura S, Ikeda K: Comparison of the epinephrine-induced arrhythminogenic effect of sevoflurane with isoflurane and halothane. J Anesthesia 1:62–68, 1987

    CAS  Google Scholar 

  4. Strum DP, Eger II El, Johnson BH, Steffey EP, Ferrell LD: Toxicity of sevoflurane in rats. Anesth Analg 66:S172, 1987

    Google Scholar 

  5. Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJC: Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44:181–195, 1971

    CAS  PubMed  Google Scholar 

  6. Kelman GR, Nunn JF: Nomograms for correction of blood PO 2, PCO 2, pH and base excess for time and temperature. J Appl Physiol 21:1484–1490, 1966

    CAS  PubMed  Google Scholar 

  7. Weiss JL, Frederiksen JW, Weisfeldt ML: Hemodynamic determinant of the time-course of fall in canine left ventricular pressure. J Clin Invest 58:751–760, 1976

    Article  CAS  PubMed  Google Scholar 

  8. Merin RG, Kumazawa T, Luka NL: Myocardial function and metabolism in the conscious dog and during halothane anesthesia. Anesthesiology 44:402–415, 1976

    Article  CAS  PubMed  Google Scholar 

  9. Merin RG, Kumazawa T, Luka NL: Enflurane depresses myocardial function, perfusion, and metabolism in the dog. Anesthesiology 45:501–507, 1976

    Article  CAS  PubMed  Google Scholar 

  10. Merin RG: Are the myocardial functional and metabolic effects of isoflurane really different from those of halothane and enflurane? Anesthesiology 55:398–408, 1981

    Article  CAS  PubMed  Google Scholar 

  11. Akazawa S, Shimizu R, Kasuda H, Nemoto K, Yoshizawa Y, Inoue S: Effects of isoflurane on hemodynamics and myocardial metabolism in the dog. Masui (Jpn J Anesth) 37:412–413 1988

    Google Scholar 

  12. Seagard JL, Elegbe EO, Hopp FA, Bosnjak ZJ, von Colditz JH, Kalbfleisch JH, Kampine JR: Effects of isoflurane on the baroreceptor reflex. Anesthesiology 59:511–520, 1983

    Article  CAS  PubMed  Google Scholar 

  13. Domenech RJ, Macho P, Valdes J, Penna M: Coronary vascular resistance during halothane anesthesia. Anesthesiology 46:236–240, 1977

    Article  CAS  PubMed  Google Scholar 

  14. Snyder R, Downey JM, Kirk ES: The active and passive components of extravascular coronary resistance. Cardiovasc Res 9:161–166, 1975

    Article  CAS  PubMed  Google Scholar 

  15. Murray PA, Vatner SF: α-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660, 1979

    CAS  PubMed  Google Scholar 

  16. Tarnow J, Eberlein HJ, Osler B, Patschke D, Schneider E, Schweickel E, Wilde J: Haemodynamik, Myokardkontractilitat, Ventrikelvolumina und Sauerstoffversorgung des Herzens unter verschiedenen Inhalationsanaesthetika. Der Anaesthesist 26:220–230, 1977

    CAS  PubMed  Google Scholar 

  17. Sybert PE, Hickey RF, Hoar PF, Verrier ED, Bainton CR: Effects of volatile anesthetics on the regulation of coronary blood flow. Anesthesiology 59:A24, 1983

    Google Scholar 

  18. Gelman S, Fowler KC, Smith LR: Regional blood flow during isoflurane and halothane anesthesia. Anesth Analg 63:557–565, 1984

    CAS  PubMed  Google Scholar 

  19. Sill JC, Bove AA, Nugent M, Blaise GA, Dewey JD, Grabau C; Effects of isoflurane on coronary arteries and coronary arterioles in the intact dog. Anesthesiology 66:273–279, 1987

    Article  CAS  PubMed  Google Scholar 

  20. Reiz S; Balfors E, Sorensen MB, Ariola S, Friedman A, Trudedsson H: Isoflurane — a powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 59:91–97, 1983

    Article  CAS  PubMed  Google Scholar 

  21. Reiz S, Ostman M: Regional coronary hemodynamics during isoflurane-nitrous oxide anesthesia in patients with ischemic heart disease. Anesth Analg 64:570–576, 1985

    Article  CAS  PubMed  Google Scholar 

  22. Moffitt EA, Barker RA, Glenn JJ, Imrie DD, DelCampo C, Landymore RW, Kinley CE, Murphy DA: Myocardial metabolism and hemodynamic responses with isoflurane anesthesia for coronary arterial surgery. Anesth Analg 65:53–61, 1986

    CAS  PubMed  Google Scholar 

  23. Khambatta HJ, Sonntag H, Larsen R, Stephan H, Stone JG, Kettler D: Coronary artery disease: global and regional myocardial blood flow and metabolism during equipotent halothane and isoflurane anesthesia. Anesthesiology 65:A503, 1986

    Article  Google Scholar 

  24. Hysing ES, Chelly JE, Doursout MF, Hartley C, Merin RG: Cardiovascular effects of and interaction between calcium blocking drugs and anesthetics in chronically instrumented dogs: III. Nicardipine and isoflurane, Anesthesiology 65:385–391, 1986

    Article  CAS  PubMed  Google Scholar 

  25. Satoh K, Yanagisawa T, Taira N: Mechanisms underlying the cardiovascular action of a new dihydropyridine vasodilator, YC-93. Clinical and Experimental Phrmacology & Phisiology 7:249–262, 1980

    Article  Google Scholar 

  26. Rousseau MF, Etienne J, Van Mechelen H, Veriter C, Pouleur H: Hemodynamic and cardiac effects of nicardipine in patients with coronary artery disease. J Cardiovasc Pharmacol 6:833–839, 1984

    Article  CAS  PubMed  Google Scholar 

  27. Braunwald E: Mechanism of action of calcium-channel-blocking agents. N Engl J Med 307:1618–1627, 1982

    Article  CAS  PubMed  Google Scholar 

  28. Waeber B, Mussberger J, Brunner HR: Does renin determine the blood pressure response to calcium entry blockers? Hypertension 7:223–227, 1985

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Akazawa, S., Shimizu, R., Kasuda, H. et al. Effects of sevoflurane on cardiovascular dynamics, coronary circulation and myocardial metabolism in dogs. J Anesth 2, 227–241 (1988). https://doi.org/10.1007/s0054080020227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0054080020227

Key words

Navigation