Skip to main content

Advertisement

Log in

Metabolic changes associated with malnutrition in the patients with multiple organ failure

  • Original Articles
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

To clarify the metabolic changes associated with malnutrition in the patients with multiple organ failure (MOF), we measured energy expenditure, nitrogen excretion, nonprotein respiratory quotient (NPRQ), caloric intake, and cumulative caloric balance (CCB) in 20 MOF patients (12 survivors and 8 non-survivors). The non-survivors exhibited significantly greater cumulative caloric deficit than the survivors. Metabolic activity tended to decline to normal in the survivors as organ failures were overcome. In the non-survivors, on the contrary, regardless of large caloric deficit hypermetabolism persisted and characteristically followed by the sudden decrease in metabolic activity at the time immediately prior to death. Compared to the survivors, the non-survivors generally exhibited poorer response in metabolic activity and greater NPRQ change to the altered amount of caloric intake. It seemed that protein sparing effect by increased caloric intake was preserved in both the survivors and the non-survivors only with CCB above −5 times basal energy expenditure. These results suggest that persistent hypermetabolism and poor metabolic response to nutritional support are partly responsible for existing organ failures and poor outcome in MOF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunker FD, Bruton CW, Hunker EM, et al: Metabolic and nutritional evaluation of patients supported with mechanical ventilation. Crit Care Med 8: 628–632, 1980

    Article  CAS  PubMed  Google Scholar 

  2. Westenskow DR, Cutler CA, Wallace WD: Instrumentation for monitoring gas exchange and metabolic rate in critically ill patients. Crit Care Med 12:183–187, 1984

    Article  CAS  PubMed  Google Scholar 

  3. Rhoads JE: The impact of nutrition on infection. Surg Clin North Am 60:41–47, 1980

    CAS  PubMed  Google Scholar 

  4. Gross RL, Newberne PM: Role of nutrition in immunologic function. Physiol Rev 60:188–291, 1980

    CAS  PubMed  Google Scholar 

  5. Sheldon GF, Petersen SR, Sanders R: Hepatic dysfunction during hyper-alimentation. Arch Surg 113:504–508, 1978

    CAS  PubMed  Google Scholar 

  6. Rowlands BJ, MacFyden BV, Dejong P, et al: Monitoring hepatic dysfunction during intravenous hyperalimentation. J Surg Res 28:471–478, 1980

    Article  CAS  PubMed  Google Scholar 

  7. Askanazi J, Rosenbaum SH, Hyman AI, et al: Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA 243:1444–1447, 1980

    Article  CAS  PubMed  Google Scholar 

  8. Askanazi J, Weissman C, Rosenbaum SH, et al: Nutrition and the respiratory system. Crit Care med 10:163–172, 1982

    Article  CAS  PubMed  Google Scholar 

  9. Siegel JH, Cerra FB, Coleman B, et al: Physiological and metabolic correlation in human sepsis. Surgery 86:163–193, 1979

    CAS  PubMed  Google Scholar 

  10. Abbott WC, Echenique MM, Bistrian B, et al: Nutritional care of the trauma patient, Surg Gynecol Obstet 157:585–597, 1983

    CAS  PubMed  Google Scholar 

  11. Turner WW, Ireton CS, Hunt JL, et al: Predicting energy expenditures in burned patients. J Trauma 25:11–16, 1985

    Article  PubMed  Google Scholar 

  12. Kinney JM, Long CL, Gump FE, et al: Tissue composition of weight loss in surgical patients I. Elective operation. Ann Surg 168:459–474, 1968

    Article  CAS  PubMed  Google Scholar 

  13. Bartlett RH, Dechert RE, Mault JR, et al: Measurement of metabolism in multiple organ failure. Surgery 92:771–779, 1982

    CAS  PubMed  Google Scholar 

  14. Hansell DT, Davies JWL, Burns HJG, et al: The oxidation of body fuel stores in cancer patients. Ann Surg 204:637–642, 1986

    Article  CAS  PubMed  Google Scholar 

  15. Lindnark L, Eden E, Ternell M, et al: Thermic effect and substrate oxidation in response to intravenous nutrition in cancer patients who loose weight. Ann Surg 204: 628–636, 1986

    Article  Google Scholar 

  16. Kinney JM: Energy metabolism, in Surgical Nutrition. Edited by Fischer JE. Boston, Little Brown and Co, 1983, pp. 97–126

    Google Scholar 

  17. Allen PC, Lee HA: A Clinical Guide to Intravenous Nutrition. Oxford, Blackwell Scientific Publication, 1964, pp.144–166

    Google Scholar 

  18. Bursztein S, Saphar P Glaser P, et al: Determination of energy metabolism from respiratory function alone. J Appl Physiol 42:117–119, 1977

    CAS  PubMed  Google Scholar 

  19. Harris JA, Benedict FG: Biometric Studies of Basal Metabolism in Man. Washington DC, Carnegie Institute of Washington Publication, Publication Number 297, 1919

    Google Scholar 

  20. Blackburn GL, Bistrian BR, Maini BS, et al: Nutrition and metabolic assessment of the hospitalized patient. J Parent Ent Nutr 1:11–22, 1977

    Article  CAS  Google Scholar 

  21. Lanschot JJB, Feenstra BWA, Looijen R, et al: Total parenteral nutrition in critically ill surgical patients: fixed vs tailored caloric replacement. Intensive Care Med 13:45–51, 1987

    Article  Google Scholar 

  22. Swinamer DL, Phang PT, Jones RL, et al: Twenty-four energy expenditure in critically ill patients. Crit Care Med 15:637–643, 1987

    Article  CAS  PubMed  Google Scholar 

  23. Astiz ME, Rackow EC, Falk JL, et al: Oxygen delivery and consumption in patients with hyperdynamic septic shock. Crit Care Med 15:26–28, 1987

    Article  CAS  PubMed  Google Scholar 

  24. Dahn MS: Visceral organ resuscitation. Perspectives in Critical Care 4:1–41, 1991

    Google Scholar 

  25. Dahn MS, Lange P, Lobdell K, et al: Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101:69–80, 1987

    CAS  PubMed  Google Scholar 

  26. Bihari D, Smithies M, Gimson A, et al: The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients. New Engl J Med 317:397–402, 1987

    Article  CAS  PubMed  Google Scholar 

  27. Shoemaker WC, Appel PL, Kram HB: Oxygen transport measurements to evaluate tissue perfusion and titrate therapy: Dobutamine and dopamine effects. Crit Care Med 19:672–688, 1991

    Article  CAS  PubMed  Google Scholar 

  28. Hasselgren PO, Biber B, Fornander J: Improved blood flow and protein synthesis in postischemic liver following infusion of dopamine. J Surg Res 34:44–52, 1983

    Article  CAS  PubMed  Google Scholar 

  29. Anghern W, Schmid E, Althaus F, et al: Effect of dopamine on hepatosplanchnic blood flow. J Cardiovasc Pharmacol 2:257–265, 1980

    Article  Google Scholar 

  30. Giovanini I, Boldrini G, Castagneto M, et al: Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. JPEN 7:226–230, 1983

    Google Scholar 

  31. Askanazi J, Carpentier YA, Elwyn DH, et al: Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191:40–46, 1980

    Article  CAS  PubMed  Google Scholar 

  32. Clows Jr. GHA, George BC, Villee Jr. CA, et al: Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308:545–552, 1983

    Article  Google Scholar 

  33. Clows Jr. GHA, Hirsch E, George BC, et al: Survival from sepsis; The significance of altered protein metabolism regulated by proteolysis inducing factor, the circulation cleavage product of interleukin 1. Ann Surg 202:446–458, 1985

    Article  Google Scholar 

  34. Cerra FB, Siegel JH, Coleman B, et al: Septic autocannibalism: A failure of exogenous nutritional support. Ann Surg 192:570–580, 1980

    Article  CAS  PubMed  Google Scholar 

  35. Cerra FB: Hypermetabolism, organ failure, and metabolic support. Surgery 101:1–14, 1987

    CAS  PubMed  Google Scholar 

  36. Bartlett RH, Mault JR, Dechert RE, et al: Continuous arteriovenous hemofiltration: Improved survival in surgical acute renal failure? Surgery 100:400–408, 1986

    CAS  PubMed  Google Scholar 

  37. Mault JR, Dechert RE, Lees P, et al: Continuous arteriovenous filtration: Ann effective treatment for surgical acute renal failure. Surgery 101:478–484, 1987

    CAS  PubMed  Google Scholar 

  38. Hirasawa H, Sugai T, Ohtake Y, et al: Energy metabolism and nutritional support in anuric multiple organ failure patients, Nutritional Support in Organ Failure. Edited by Tanaka T and Okada A. Amsterdam, Elsevier Scientic Publishers, 1990, 429–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Sato, J., Inaba, H., Hirasawa, H. et al. Metabolic changes associated with malnutrition in the patients with multiple organ failure. J Anesth 7, 276–286 (1993). https://doi.org/10.1007/s0054030070276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s0054030070276

Key words

Navigation