Skip to main content
Log in

Prediction of anesthetic torsadogenicity using a human ventricular cell model

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

This simulation study was designed to predict the torsadogenicity of sevoflurane and propofol in healthy control, as well as type 1 and type 2 long QT syndrome (LQT1 and LQT2, respectively), using the O'Hara-Rudy dynamic model. LQT1 and LQT2 models were simulated by decreasing the conductances of slowly and rapidly activating delayed rectifier K+ currents (IKs and IKr, respectively) by 50%, respectively. Action potential duration at 50% repolarization level (APD50) and diastolic intracellular Ca2+ concentration were measured in epicardial cell during administration of sevoflurane (1 ~ 5%) and propofol (1 ~ 10 μM). Torsadogenicity can be predicted from the relationship between APD50 and diastolic intracellular Ca2+ concentration, which is classified by the decision boundary. Whereas the relationships in control and LQT1 models were distributed on nontorsadogenic side in the presence of sevoflurane at all tested concentrations, those in LQT2 models were shifted to torsadogenic side by concentrations of ≥ 2%. In all three models, propofol shifted the relationships in a direction away from the decision boundary on nontorsadogenic side. Our findings suggest that sevoflurane, but not propofol, exerts torsadogenicity in patients with reduced IKr, such as LQT2 patients. Caution should be paid to the occurrence of arrhythmia during sevoflurane anesthesia in patients with reduced IKr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104:569–80.

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: From genetics to management. Circ Arrhythm Electrophysiol. 2012;5:868–77.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350:1013–22.

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, Gabbarini F, Goulene K, Insolia R, Mannarino S, Mosca F, Nespoli L, Rimini A, Rosati E, Salice P, Spazzolini C. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120:1761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Hare M, Maldonado Y, Munro J, Ackerman MJ, Ramakrishna H, Sorajja D. Perioperative management of patients with congenital or acquired disorders of the QT interval. Br J Anaesth. 2018;120:629–44.

    Article  CAS  PubMed  Google Scholar 

  6. Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V, Hayashi K, Nakajima T, Ohno S, Makiyama T, Wu J, Hasegawa K, Mastantuono E, Dagradi F, Pedrazzini M, Yamagishi M, Berthet M, Murakami Y, Shimizu W, Guicheney P, Schwartz PJ, Horie M. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016;37:1456–64.

    Article  PubMed  Google Scholar 

  7. Lancaster MC, Sobie EA. Improved prediction of drug-induced Torsades de Pointes through simulations of dynamics and machine learning algorithms. Clin Pharmacol Ther. 2016;100:371–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 2014;167:292–300.

    Article  PubMed  Google Scholar 

  9. Kang J, Reynolds WP, Chen XL, Ji J, Wang H, Rampe DE. Mechanisms underlying the QT interval-prolonging effects of sevoflurane and its interactions with other QT-prolonging drugs. Anesthesiology. 2006;104:1015–22.

    Article  CAS  PubMed  Google Scholar 

  10. Shibata S, Ono K, Iijima T. Sevoflurane inhibition of the slowly activating delayed rectifier K+ current in guinea pig ventricular cells. J Pharmacol Sci. 2004;95:363–73.

    Article  CAS  PubMed  Google Scholar 

  11. Yang L, Liu H, Sun HY, Li GR. Intravenous anesthetic propofol inhibits multiple human cardiac potassium channels. Anesthesiology. 2015;122:571–84.

    Article  CAS  PubMed  Google Scholar 

  12. Hatakeyama N, Sakuraya F, Matsuda N, Kimura J, Kinoshita H, Kemmotsu O, Yamazaki M, Hattori Y. Pharmacological significance of the blocking action of the intravenous general anesthetic propofol on the slow component of cardiac delayed rectifier K+ current. J Pharmacol Sci. 2009;110:334–43.

    Article  CAS  PubMed  Google Scholar 

  13. Staikou C, Stamelos M, Stavroulakis E. Impact of anaesthetic drugs and adjuvants on ECG markers of torsadogenicity. Br J Anaesth. 2014;112:217–30.

    Article  CAS  PubMed  Google Scholar 

  14. Whyte SD, Nathan A, Myers D, Watkins SC, Kannankeril PJ, Etheridge SP, Andrade J, Collins KK, Law IH, Hayes J, Sanatani S. The safety of modern anesthesia for children with long QT syndrome. Anesth Analg. 2014;119:932–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hume-Smith HV, Sanatani S, Lim J, Chau A, Whyte SD. The effect of propofol concentration on dispersion of myocardial repolarization in children. Anesth Analg. 2008;107:806–10.

    Article  CAS  PubMed  Google Scholar 

  16. Scuderi PE. Sevoflurane and QTc prolongation: an interesting observation, or a clinically significant finding? Anesthesiology. 2010;113:772–5.

    Article  PubMed  Google Scholar 

  17. Saussine M, Massad I, Raczka F, Davy JM, Frapier JM. Torsade de pointes during sevoflurane anesthesia in a child with congenital long QT syndrome. Paediatr Anaesth. 2006;16:63–5.

    Article  PubMed  Google Scholar 

  18. Kumakura M, Hara K, Sata T. Sevoflurane-associated torsade de pointes in a patient with congenital long QT syndrome genotype 2. J Clin Anesth. 2016;33:81–5.

    Article  PubMed  Google Scholar 

  19. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation. PLoS Comput Biol. 2011;7: e1002061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoetzer C, Reuter S, Doll T, Foadi N, Wegner F, Leffler A. Inhibition of the cardiac Na+ channel α-subunit Nav1.5 by propofol and dexmedetomidine. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:315–25.

    Article  CAS  PubMed  Google Scholar 

  21. Park WK, Pancrazio JJ, Suh CK, Lynch C 3rd. Myocardial depressant effects of sevoflurane: mechanical and electrophysiologic actions in vitro. Anesthesiology. 1996;84:1166–76.

    Article  CAS  PubMed  Google Scholar 

  22. Buljubasic N, Marijic J, Berczi V, Supan DF, Kampine JP, Bosnjak ZJ. Differential effects of etomidate, propofol, and midazolam on calcium and potassium channel currents in canine myocardial cells. Anesthesiology. 1996;85:1092–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ay B, Wallace D, Mantilla CB, Prakash YS. Differential inhibition of neuronal Na+-Ca2+ exchange versus store-operated Ca2+ channels by volatile anesthetics in pheochromocytoma (PC12) cells. Anesthesiology. 2005;103:93–101.

    Article  CAS  PubMed  Google Scholar 

  24. Puttick RM, Terrar DA. Effects of propofol and enflurane on action potentials, membrane currents and contraction of guinea-pig isolated ventricular myocytes. Br J Pharmacol. 1992;107:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pampal HK, Unal Y, Demirel CB, Albayrak A, Kurtipek O, Murat A, Arslan M, Kavutcu M. The effects of sevoflurane and propofol anesthesia on renal sodium-potassium adenosine triphosphatase activity during pneumoperitoneum in rats. Saudi Med J. 2012;33:244–9.

    PubMed  Google Scholar 

  26. Kutchai H, Geddis LM, Farley RA. Effects of general anaesthetics on the activity of the Na, K-ATPase of canine renal medulla. Pharmacol Res. 1999;40:469–73.

    Article  CAS  PubMed  Google Scholar 

  27. Kojima A, Fukushima Y, Itoh H, Imoto K, Matsuura H. A computational analysis of the effect of sevoflurane in a human ventricular cell model of long QT syndrome: Importance of repolarization reserve in the QT-prolonging effect of sevoflurane. Eur J Pharmacol. 2020;883: 173378.

    Article  CAS  PubMed  Google Scholar 

  28. Mann SA, Imtiaz M, Winbo A, Rydberg A, Perry MD, Couderc JP, Polonsky B, McNitt S, Zareba W, Hill AP, Vandenberg JI. Convergence of models of human ventricular myocyte electrophysiology after global optimization to recapitulate clinical long QT phenotypes. J Mol Cell Cardiol. 2016;100:25–34.

    Article  CAS  PubMed  Google Scholar 

  29. Jost N, Virág L, Bitay M, Takács J, Lengyel C, Biliczki P, Nagy Z, Bogáts G, Lathrop DA, Papp JG, Varró A. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. Circulation. 2005;112:1392–9.

    Article  PubMed  Google Scholar 

  30. Kojima A, Mi X, Fukushima Y, Ding WG, Omatsu-Kanbe M, Matsuura H. Elevation of propofol sensitivity of cardiac IKs channel by KCNE1 polymorphism D85N. Br J Pharmacol. 2021;178:2690–708.

    Article  CAS  PubMed  Google Scholar 

  31. Han SN, Jing Y, Yang LL, Zhang Z, Zhang LR. Propofol inhibits hERG K+ channels and enhances the inhibition effects on its mutations in HEK293 cells. Eur J Pharmacol. 2016;791:168–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Kojima.

Ethics declarations

Conflict of interest

AK, YF and HM have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, A., Fukushima, Y. & Matsuura, H. Prediction of anesthetic torsadogenicity using a human ventricular cell model. J Anesth 37, 806–810 (2023). https://doi.org/10.1007/s00540-023-03238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-023-03238-9

Keywords

Navigation