Skip to main content

Advertisement

Log in

Association between intraoperative oliguria and postoperative acute kidney injury in non-cardiac surgical patients: a systematic review and meta-analysis

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

This systematic review and meta-analysis aimed to evaluate the association between intraoperative oliguria and the risk of postoperative acute kidney injury (AKI) in patients undergoing non-cardiac surgery.

Methods

The MEDLINE and EMBASE databases were searched up to August 2022 for studies in adult patients undergoing non-cardiac surgery, where the association between intraoperative urine output and the risk of postoperative AKI was assessed. Both randomised and non-randomised studies were eligible for inclusion. Study selection and risk of bias assessment were independently performed by two investigators. The risk of bias was evaluated using the Newcastle–Ottawa scale. We performed meta-analysis of the reported multivariate adjusted odds ratios for the association between intraoperative oliguria (defined as urine output < 0.5 mL/kg/hr) and the risk of postoperative AKI using the inverse-variance method with random effects models. We conducted sensitivity analyses using varying definitions of oliguria as well as by pooling unadjusted odds ratios to establish the robustness of the primary meta-analysis. We also conducted subgroup analyses according to surgery type and definition of AKI to explore potential sources of clinical or methodological heterogeneity.

Results

Eleven studies (total 49,252 patients from 11 observational studies including a post hoc analysis of a randomised controlled trial) met the selection criteria. Seven of these studies contributed data from a total 17,148 patients to the primary meta-analysis. Intraoperative oliguria was associated with a significantly elevated risk of postoperative AKI (pooled adjusted odds ratio [OR] 1.74; 95% confidence interval [CI] 1.36–2.23, p < 0.0001, 8 studies). Sensitivity analyses supported the robustness of the primary meta-analysis. There was no evidence of any significant subgroup differences according to surgery type or definition of AKI.

Conclusions

This study demonstrated a significant association between intraoperative oliguria and the risk of postoperative AKI, regardless of the definitions of oliguria or AKI used. Further prospective and multi-centre studies using standardised definitions of intraoperative oliguria are required to define the thresholds of oliguria and establish strategies to minimise the risk of AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All datasets utilised in the analysis during the current study are available from the corresponding author on reasonable request.

References

  1. Kellum JA, Sileanu FE, Murugan R, Lucko N, Shaw AD, Clermont G. Classifying AKI by urine output versus serum creatinine level. J Am Soc Nephrol. 2015;26:2231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eknoyan G. The origins of nephrology–galen, the founding father of experimental renal physiology. Am J Nephrol. 1989;9:66–82.

    Article  CAS  PubMed  Google Scholar 

  3. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, Zarbock A. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellomo R, Roneo C, Kellum J, Mehta RL, Palevsky P. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8:R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Warnock DG, Levin A. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kidney Disease: Improving Global Outcomes (KIDGO). Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney Int. 2012; Suppl 2;1–138.

  7. Macedo E, Malhotra R, Claure-Del Granado R, Fedullo P, Mehta RL. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol Dial Transplant. 2011;26:509–15.

    Article  PubMed  Google Scholar 

  8. Gameiro J, Neves JB, Rodrigues N, Bekerman C, Melo MJ, Pereira M, Teixeira C, Mendes I, Jorge S, Rosa R, Lopes JA. Acute kidney injury, long-term renal function and mortality in patients undergoing major abdominal surgery: a cohort analysis. Clin Kidney J. 2016;9:192–200.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kullmar M, Meersch M. intraoperative oliguria: physiological or beginning acute kidney injury? Anesth Analg. 2018;127:1109–10.

    Article  PubMed  Google Scholar 

  10. du Toit L, Biccard BM. The relationship between intraoperative oliguria and acute kidney injury. Br J Anaesth. 2019;122:707–10.

    Article  PubMed  Google Scholar 

  11. Fukazawa K, Lee HT. Volatile anesthetics and AKI: risks, mechanisms, and a potential therapeutic window. J Am Soc Nephrol. 2014;25:884–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen NT, Perez RV, Fleming N, Rivers R, Wolfe BM. Effect of prolonged pneumoperitoneum on intraoperative urine output during laparoscopic gastric bypass. J Am Coll Surg. 2002;195:476–83.

    Article  PubMed  Google Scholar 

  13. Kork F, Balzer F, Spies CD, Wernecke KD, Ginde AA, Janowski J, Eltzchig HK. Minor postoperative increases of creatinine are associated with higher mortality and longer hospital stay in surgical patients. Anesthesiology. 2015;123:1301–11.

    Article  CAS  PubMed  Google Scholar 

  14. McIlroy DR, Belloma R, Billings FT, Karkouti K, Prowle JR, Shaw AD, Myles PS. Systematic review and consensus definitions for the standardised endpoints in perioperative medicine (StEP) initiative: renal endpoints. Br J Anaesth. 2018;121:1013–24.

    Article  CAS  PubMed  Google Scholar 

  15. O’Neal JB, Shaw AD, Billings FT. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20:187.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grams ME, Sang Y, Coresh J, Ballew S, Matsushita K, Molnar MZ, Szabo Z, Kalantar-Zadeh K, Kovesdy CP. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data. Am J Kidney Dis. 2016;67:872–80.

    Article  PubMed  Google Scholar 

  17. Thakar CV, Kharat V, Blank S, Leonard AC. Acute kidney injury after gastric bypass surgery. Clin J Am Soc Nephrol. 2007;2:426–30.

    Article  PubMed  Google Scholar 

  18. Cabezuelo JB, Ramirez P, Rios A, Acosta F, Torres D, Sansano T, Pons JA, Bru M, Montoya M, Bueno FS, Robles R. Risk factors of acute renal failure after liver transplantation. Kidney Int. 2006;69:1073–80.

    Article  CAS  PubMed  Google Scholar 

  19. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81:442–8.

    Article  PubMed  Google Scholar 

  20. Hultstrom M. Neurohormonal interactions on the renal oxygen delivery and consumption in haemorrhagic shock-induced acute kidney injury. Acta Physiol (Oxf). 2013;209:11–25.

    Article  CAS  PubMed  Google Scholar 

  21. Fani F, Regolisti G, Delsante M, Cantalappi V, Castellano G, Gesualdo L, Villa G, Fiaccadori E. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 2018;31:351–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.

    Article  PubMed  Google Scholar 

  23. Goren O, Matot I. (2015) Perioperative acute kidney injury. Br J Anaesth. 115 Suppl 2: ii3–14.

  24. Burton D, Nicholson G, Hall G. Endocrine and metabolic response to surgery. Continuing Education Anaesthesia Critical Care Pain. 2004;4:169–71.

    Article  Google Scholar 

  25. Philbin DM, Coggins CH. Plasma antidiuretic hormone levels in cardiac surgical patients during morphine and halothane anesthesia. Anesthesiology. 1978;49:95–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bozkurt P, Kaya G, Yuksel Y, Fatius A, Bakan M, Hacibekiroglu M, Kavunoblu G. Effects of systemic and epidural morphine on antidiuretic hormone levels in children. Paediatr Anaesth. 2003;13:508–14.

    Article  PubMed  Google Scholar 

  27. Abuelo JG. Normotensive ischemic acute renal failure. N Engl J Med. 2007;357:797–805.

    Article  CAS  PubMed  Google Scholar 

  28. Nash DM, Mustafa RA, McArthur E, Wijeysundera DN, Paterson JM, Sharan S, Vinden C, Wald R, Welk B, Sessler DI, Devereaux PJ. Combined general and neuraxial anesthesia versus general anesthesia: a population-based cohort study. Can J Anaesth. 2015;62:356–68.

    Article  PubMed  Google Scholar 

  29. Klein SJ, Lehner GF, Forni LG, Joannidis M. Oliguria in critically ill patients: a narrative review. J Nephrol. 2018;31:855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiu AW, Chang LS, Birkett DH, Babayan RK. Changes in urinary output and electrolytes during gaseous and gasless laparoscopy. Urol Res. 1996;24:361–6.

    Article  CAS  PubMed  Google Scholar 

  31. Lucas GNC, Leitao AC, Alencar RL, Xavier RM, Daher ED, Junior GB. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019;41:124–30.

    Article  PubMed  Google Scholar 

  32. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int. 2011;79:33–45.

    Article  CAS  PubMed  Google Scholar 

  33. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother. 1999;43:1003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff J, Mulrow C, Moher D. The PRISMA statement for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol. 2021;134:103–12.

    Article  PubMed  Google Scholar 

  35. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds). (2022) Cochrane Handbook for systematic reviews of interventions version 6.3 (updated February 2022). Cochrane

  36. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    Article  PubMed  Google Scholar 

  37. Myles PS, McIIroy DR, Bellomo R, Wallace S. Importance of intraoperative oliguria during major abdominal surgery: findings of the restrictive versus liberal fluid therapy in major abdominal surgery trial. Br J Anaesth. 2019;122:726–33.

    Article  PubMed  Google Scholar 

  38. Kheterpal S, Tremper KK, Englesbe MJ, O’Reilly M, Shanks AM, Fetterman DM, Rosenberg AL, Swartz RD. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.

    Article  PubMed  Google Scholar 

  39. Mizota T, Yamamoto Y, Hamada M, Matsukawa S, Shimizu S, Kai S. Intraoperative oliguria predicts acute kidney injury after major abdominal surgery. Br J Anaesth. 2017;119:1127–34.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao BC, Lei SH, Yang X, Zhang Y, Qiu SD, Liu WF, Li C, Liu KX. Assessment of prognostic value of intraoperative oliguria for postoperative acute kidney injury: a retrospective cohort study. Br J Anaesth. 2020;126:799–807.

    Article  PubMed  Google Scholar 

  41. Inacio R, Gameiro J, Amaro S, Duarte M. Intraoperative oliguria does not predict postoperative acute kidney injury in major abdominal surgery: a cohort analysis. J Bras Nefrol. 2021;43:9–19.

    Article  PubMed  Google Scholar 

  42. Goren O, Levy A, Cattan A, Lahat G, Matot I. Acute kidney injury in pancreatic surgery; association with urine output and intraoperative fluid administration. Am J Surg. 2017;214:246–50.

    Article  PubMed  Google Scholar 

  43. Valencia Morales DJ, Plack DL, Kendrick ML, Schroeder DR, Sprung, J, Weingarten TN. (2022) Urine output and acute kidney injury following laparoscopic pancreas operations. HPB, Article in press

  44. Kim WH, Lee HC, Lim L, Ryu HG, Jung CW. Intraoperative oliguria with decreased SvO2 predicts acute kidney injury after living donor liver transplantation. J Clin Med. 2018;8(29):1–14.

    Google Scholar 

  45. Slankamenac K, Beck-Schimmer B, Breitenstein S, Puhan MA, Clavien PA. Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery. World J Surg. 2013;37(11):2618–28.

    Article  PubMed  Google Scholar 

  46. Hur M, Park SK, Yoo S, Choi SN, Jeong CW, Kim WH, Kim JT, Kwak C, Bahk JH. The association between intraoperative urine output and postoperative acute kidney injury differs between partial and radical nephrectomy. Sci Rep. 2019;9(760):1–9.

    Google Scholar 

  47. Shiba A, Uchino S, FujiiT Takinami M, Uezono S. Association between intraoperative oliguria and acute kidney injury after major noncardiac surgery. Anesth Analg. 2018;127:1229–35.

    Article  PubMed  Google Scholar 

  48. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86:829–35.

    Article  CAS  PubMed  Google Scholar 

  49. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J. Carpenter j, Rucker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peter J, Macaskill P, Schwarzer G, Duval s, Altman DG, Moher d, H'iggins JPT. (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ.;343 4002

  50. Puckett JR, Pickering JW, Palmer SC, McCall JL, Kluger MT, De Zoysa J, Endre ZH, Soop M. Low versus standard urine output targets in patients undergoing major abdominal surgery: a randomized noninferiority trial. Ann Surg. 2017;265(5):874–81.

    Article  PubMed  Google Scholar 

  51. Prowle JR, Liu YL, Licari E, Bagshaw SM,Egi M, Haase M, Haase-Fielitz A, Kellum JA, Cruz D, Ronco C, Tsutsui K, Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care. 2011;15:R172. https://doi.org/10.1186/cc10318.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Md Ralib A, Pickering JW, Shaw GM, Endre ZH. The urine output definition of acute kidney injury is too liberal. Crit Care. 2013;17:R112.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fliser D, Laville M, Covic A, Fouque D, Vanholder R, Juillard L, Van Biesen W. A European Renal Best Practice (ERBP) position statement on Kidney Disease Improving Global Outcome (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast induced nephropathty. Nephrol Dial Transpl. 2012;27:4263–72.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DAM contributed to study conception, acquisition, analysis, interpretation of data, drafting, and editing of the manuscript. SSL contributed to analysis, interpretation of data, drafting and editing of the manuscript. SGKO contributed to acquisition, analysis, interpretation of data, drafting, and editing of the manuscript. PCAK provided oversight and expertise on all aspects of the manuscript including study conception, acquisition, analysis, interpretation of data, drafting, and editing of the manuscript.

Corresponding author

Correspondence to Peter C. A. Kam.

Ethics declarations

Conflict of interest

No conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

540_2022_3150_MOESM1_ESM.pptx

Supplementary file1 Sensitivity Analysis: Odds ratio of Acute Kidney Injury according to the presence of oliguria as defined by the study (PPTX 99 KB)

540_2022_3150_MOESM2_ESM.pptx

Supplementary file2 Sensitivity Analysis: Odds ratio of Acute Kidney Injury according to the presence of oliguria (<0.3 mL/kg/hr) (PPTX 90 KB)

540_2022_3150_MOESM3_ESM.pptx

Supplementary file3 Sensitivity Analysis: Odds ratio of Acute Kidney Injury according to the presence of oliguria (<0.5 mL/kg/hr) using pooled unadjusted data (PPTX 84 KB)

540_2022_3150_MOESM4_ESM.pptx

Supplementary file4 Subgroup Analysis according to surgery type, to identify any subgroup differences between patients undergoing nephrectomy (partial or total) and all other types of surgery: Odds ratio of Acute Kidney Injury according to according to the presence of oliguria (<0.5 mL/kg/hr) (PPTX 114 KB)

540_2022_3150_MOESM5_ESM.pptx

Supplementary file5 Subgroup Analysis according to surgery type: Odds ratio of Acute Kidney Injury according to the presence of oliguria (<0.5mL/kg/hr) (PPTX 128 KB)

540_2022_3150_MOESM6_ESM.pptx

Supplementary file6 Subgroup Analysis according to definition of Acute Kidney Injury: Odds ratio of AKI according to according to the presence of oliguria (<0.5 mL/kg/hr) (PPTX 123 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milder, D.A., Liang, S.S., Ong, S.G.K. et al. Association between intraoperative oliguria and postoperative acute kidney injury in non-cardiac surgical patients: a systematic review and meta-analysis. J Anesth 37, 219–233 (2023). https://doi.org/10.1007/s00540-022-03150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-022-03150-8

Keywords

Navigation