Skip to main content
Log in

Hemodilution on microvascular oxygen delivery potential of the blood during coronary bypass surgery

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The hematocrit-to-whole blood viscosity ratio (Hct/WBV) reflects the blood O2 delivery potential (O2-DP). WBV is variable to the dynamic vascular shear rate (SR), 1–5/s at microcirculation and 300/s at larger vessels. To estimate the impact of hemodilution on the blood O2-DP to the myocardium, we analyzed the hemodilution-induced change of Hct/WBV at SR 5/s (Hct/WBV5) during off-pump coronary bypass (OPCAB) surgery.

Methods

During OPCAB surgery (n = 21), 10% acute normovolemic hemodilution (HD 10%) was applied. Arterial blood samples were taken: one before and two after HD 10%. One of which after HD 10% underwent an additional 33% in vitro hemodilution (reaching 40% hemodilution in total, HD 40%). WBV of all blood samples was determined using a scan-capillary tube viscometer (Hemovister). The changes of Hct/WBV5 were analyzed as a primary measure of the study and compared with those of Hct/WBV at SR 300/s (Hct/WBV300).

Results

Median[IQR] of Hct/WBV5 [3.5 (2.8–4.2)%/cPoise] was significantly increased by HD 10 and HD 40% [3.6 (3.2–4.6)%/cPoise and 4.2 (3.3–5.2)%/cPoise, respectively, all P < 0.001], but the degrees of changes after HD 10 and HD 40% were not different. Median[IQR] of Hct/WBV300 [10.3(8.6‒10.8)%/cPoise] was not changed by HD 10% [10.3(9.1–11.1)%/cPoise], but it was significantly decreased by HD 40% [8.4(7.4‒9.2)%/cPoise, P < 0.001].

Conclusion

The increased Hct/WBV5 suggests that 10–40% hemodilution improves the blood O2-DP to the myocardium during OPCAB surgery. The SR-specific discrepancy in Hct/WBV changes advocates using microvascular WBV and Hct/WBV to evaluate the blood O2-DP changes to the myocardium. Further study is warranted to assess the actual changes in myocardial O2 delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rampling M. Red cell aggregation and yield stress. In: Lowe G, editor. Clinical blood rheology. 1st ed. Boca Raton: CRC Press; 1988. p. 45–64.

    Google Scholar 

  2. Barile L, Fominskiy E, Di Tomasso N, Alpizar Castro LE, Landoni G, De Luca M, Bignami E, Sala A, Zangrillo A, Monaco F. Acute normovolemic hemodilution reduces allogeneic red blood cell transfusion in cardiac surgery: a systematic review and meta-analysis of randomized trials. Anesth Analg. 2017;124(3):743–52.

    Article  PubMed  Google Scholar 

  3. Spahn DR, Leone BJ, Reves J, Pasch T. Cardiovascular and coronary physiology of acute isovolemic hemodilution: a review of nonoxygen-carrying and oxygen-carrying solutions. Anesth Analg. 1994;78:1000–21.

    Article  CAS  PubMed  Google Scholar 

  4. Tan GM, Guinn NR, Frank SM, Shander A. Proceedings from the society for advancement of blood management annual meeting 2017: management dilemmas of the surgical patient-when blood is not an option. Anesth Analg. 2019;128:144–51.

    Article  PubMed  Google Scholar 

  5. Aly Hassan A, Lochbuehler H, Frey L, Messmer K. Global tissue oxygenation during normovolaemic haemodilution in young children. Paediatr Anaesth. 1997;7:197–204.

    Article  CAS  PubMed  Google Scholar 

  6. Fan F-C, Chen R, Schuessler G, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol-Heart Circ Physiol. 1980;238:H545–622.

    Article  CAS  Google Scholar 

  7. Jamnicki M, Kocian R, van der Linden P, Zaugg M, Spahn DR. Acute normovolemic hemodilution: physiology, limitations, and clinical use. J Cardiothorac Vasc Anesth. 2003;17:747–54.

    Article  PubMed  Google Scholar 

  8. Jan KM, Chien S. Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol. 1977;233:H106–13.

    CAS  PubMed  Google Scholar 

  9. Schultz SG. William Harvey and the circulation of the blood: the birth of a scientific revolution and modern physiology. Physiology. 2002;17:175–80.

    Article  Google Scholar 

  10. Van Woerkens E, Trouwborst A, Duncker D, Koning M, Boomsma F, Verdouw P. Catecholamines and regional hemodynamics during isovolemic hemodilution in anesthetized pigs. J Appl Physiol. 1992;72:760–9.

    Article  PubMed  Google Scholar 

  11. Tripette J, Alexy T, Hardy-Dessources MD, Mougenel D, Beltan E, Chalabi T, Chout R, Etienne-Julan M, Hue O, Meiselman HJ, Connes P. Red blood cell aggregation, aggregate strength and oxygen transport potential of blood are abnormal in both homozygous sickle cell anemia and sickle-hemoglobin C disease. Haematologica. 2009;94:1060–5.

  12. Arya VK, Nagdeve NG, Kumar A, Thingnam SK, Dhaliwal RS. Comparison of hemodynamic changes after acute normovolemic hemodilution using Ringer’s lactate versus 5% albumin in patients on beta-blockers artery bypass surgery. J Cardiothorac Vasc Anesth. 2006;20:812–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ickx BE, Rigolet M, Van der Linden PJ. Cardiovascular and metabolic response to acute normovolemic anemia effects of anesthesia. Anesthesiology. 2000;93:1011–6.

    Article  CAS  PubMed  Google Scholar 

  14. Spahn DR, Schmid ER, Seifert B, Pasch T. Hemodilution tolerance in patients with coronary artery disease who are receiving chronic beta-adrenergic blocker therapy. Anesth Analg. 1996;82:687–94.

    CAS  PubMed  Google Scholar 

  15. Levy PS, Kim SJ, Eckel PK, Chavez RO, Ismail EF, Gould SA, Ramez Salem M, Crystal GJ. Limit to cardiac compensation during acute isovolemic hemodilution: influence of coronary stenosis. Am J Physiol-Heart Circ Physiol. 1993;265(1):H340–9.

    Article  CAS  Google Scholar 

  16. Sung TY, Kwon MY, Muhammad HB, Kim JD, Kang WS, Kim SH, Kim DK, Yoon TG, Kim TY, Kim JH, Kang H. Placing a saline bag underneath the heart enhances transgastric transesophageal echocardiographic imaging during cardiac displacement for off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2014;28(1):42–8.

    Article  PubMed  Google Scholar 

  17. Bogar L, Juricskay I, Kesmarky G, Kenyeres P, Toth K. Erythrocyte transport efficacy of human blood: a rheological point of view. Eur J Clin Investig. 2005;35:687–90.

    Article  CAS  Google Scholar 

  18. Dupuy-Fons C, Brun JF, Pellerin F, Laborde JC, Bardet L, Orsetti A, Janbon C. Relationships between blood rheology and transcutaneous oxygen pressure in peripheral occlusive arterial disease. Clin Hemorheol Microcirc. 1995;15(2):191–9.

    Article  Google Scholar 

  19. Jung JM, Lee DH, Kim KT, Choi MS, Cho YG, Lee HS, Choi SI, Lee SR, Kim DS. Reference intervals for whole blood viscosity using the analytical performance-evaluated scanning capillary tube viscometer. Clin Biochem. 2014;47(6):489–93.

    Article  CAS  PubMed  Google Scholar 

  20. Kim D, Cho DJ, Cho YI. Reduced amputation rate with isovolemic hemodilution in critical limb ischemia patients. Clin Hemorheol Microcirc. 2017;67(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  21. Nemeth N, Alexy T, Furka A, Baskurt OK, Meiselman HJ, Furka I, Miko I. Inter-species differences in hematocrit to blood viscosity ratio. Biorheology. 2009;46(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  22. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Hemorheological abnormalities in stable angina and acute coronary syndromes. Clin Hemorheol Microcirc. 2008;39:43–51.

    Article  PubMed  Google Scholar 

  23. Lee BK, Durairaj A, Mehra A, Wenby RB, Meiselman HJ, Alexy T. Microcirculatory dysfunction in cardiac syndrome X: role of abnormal blood rheology. Microcirculation. 2008;15:451–9.

    Article  CAS  PubMed  Google Scholar 

  24. Noguchi KGY, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw. 2012;50:1–23.

    Article  Google Scholar 

  25. Eckmann DM, Bowers S, Stecker M, Cheung AT. Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity. Anesth Analg. 2000;91:539–45.

    Article  CAS  PubMed  Google Scholar 

  26. Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ Res. 1978;43:738–49.

    Article  CAS  PubMed  Google Scholar 

  27. Yalcin O, Ortiz D, Williams AT, Johnson PC, Cabrales P. Perfusion pressure and blood flow determine microvascular apparent viscosity. Exp Physiol. 2015;100:977–87.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alexy T, Pais E, Armstrong JK, Meiselman HJ, Johnson CS, Fisher TC. Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion. 2006;46:912–8.

    Article  PubMed  Google Scholar 

  29. Zimmerman R, Tsai AG, Vázquez BY, Cabrales P, Hofmann A, Meier J, Shander A, Spahn DR, Friedman JM, Tartakovsky DM, Intaglietta M. Post-transfusion increase of hematocrit per se does not improve circulatory oxygen delivery due to increased blood viscosity. Anesth Analg. 2017;124(5):1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho YI, Cho DJ, Rosenson RS. Endothelial shear stress and blood viscosity in peripheral arterial disease. Curr Atheroscler Rep. 2014;16:404.

    Article  PubMed  Google Scholar 

  31. Spahn DR, Smith LR, Veronee CD, McRae RL, Hu WC, Menius AJ, Lowe JE, Leone BJ. Acute isovolemic hemodilution and blood transfusion: effects on regional function and metabolism in myocardium with compromised coronary blood flow. J Thorac Cardiovasc Surg. 1993;105(4):694–704.

    Article  CAS  PubMed  Google Scholar 

  32. Licker M, Ellenberger C, Dierra J, Kalangos A, Diaper J, Morel D. Cardioprotective effects of acute normovolemic hemodilution in patients undergoing coronary artery bypass surgery. Chest. 2005;128:838–47.

    Article  PubMed  Google Scholar 

  33. Egli GA, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR. Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. Br J Anaesth. 1997;78:684–9.

    Article  CAS  PubMed  Google Scholar 

  34. Höfling B, von Restorff W, Holtz J, Bassenge E. Viscous and inertial fractions of total perfusion energy dissipation in the coronary circulation of thein situ perfused dog heart. Pflugers Arch. 1975;358:1–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Editage (http://www.editage.co.kr) for editing and reviewing this manuscript for the English language. There was a considerable delay from recruiting the last patient to submitting the current manuscript due to the restricted research-related activity and institutional policy during the prolonged COVID pandemic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Yop Kim.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DK., Park, S., Spahn, D.R. et al. Hemodilution on microvascular oxygen delivery potential of the blood during coronary bypass surgery. J Anesth 36, 723–730 (2022). https://doi.org/10.1007/s00540-022-03109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-022-03109-9

Keywords

Navigation