Skip to main content

Association between intraoperative hyperglycemia and postoperative end-organ dysfunctions after cardiac surgery: a retrospective observational study

A Correction to this article was published on 04 December 2021

This article has been updated

Abstract

Purpose

Hyperglycemia has been associated with postoperative morbidity in patients who undergo cardiac surgery. However, it remains unclear whether the duration of hyperglycemia is as important as its magnitude in the development of postoperative end-organ dysfunction (PEOD). This retrospective study investigated the hypothesis that the intraoperative blood glucose (BG) exposure index (GE index), calculated by the product of the magnitude and duration of BG concentration ≥ 180 mg/dL, which is an integration of the severity and duration of hyperglycemia, is associated with the incidence of PEOD in patients undergoing cardiac surgery with cardiopulmonary bypass.

Methods

The primary outcome in this study was PEOD within 72 h of surgery, which was defined as a composite of postoperative acute kidney injury, delirium, myocardial injury, and prolonged mechanical ventilation. The GE index (the magnitude of BG concentration deviation ≥ 180 mg/dL \(\times\) duration of BG concentration ≥ 180 mg/dL) of each patient was calculated based on the intraoperative BG concentration. The relationship between the GE index and the primary outcome was examined via logistic regression model with adjustment for potential confounders.

Results

Within 72 h of surgery, 301 patients (54.5%) developed PEOD. PEOD was more common in patients with greater GE index quartiles (first versus third quartile; adjusted odds ratio, 5.65, 95% confidence interval (95% CI), 2.94–10.90; P < 0.001; first versus forth quartile, adjusted odds ratio, 20.80; 95% CI, 8.01–54.00; P < 0.001).

Conclusion

In patients undergoing cardiac surgery with cardiopulmonary bypass, the GE index was an independent predictor of PEOD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Change history

References

  1. Prondzinsky R, Knüpfer A, Lopponow H, Redling F, Lehmann DW, Stabenow I, Witthaut R, Unverzagt S, Radke J, Zerkowski HR, Werdan K. Surgical trauma affects the proinflammatory status after cardiac surgery to a higher degree than cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2005;129:760–6.

    Article  Google Scholar 

  2. Laffey JG, Boylan JF, Cheng DC. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002;97:215–52.

    CAS  Article  Google Scholar 

  3. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M, Dupuis JY, Fremes SE, Kent B, Laflamme C, Lamy A, Legare JF, Mazer CD, McCluskey SA, Rubens FD, Sawchuk C, Beattie WS. Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation. 2009;119:495–502.

    Article  Google Scholar 

  4. O’Neal JB, Shaw AD, Billings FT 4th. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016. https://doi.org/10.1186/s13054-016-1352-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goren O, Matot I. Perioperative acute kidney injury. Br J Anaesth. 2015. https://doi.org/10.1093/bja/aev380.

    Article  PubMed  Google Scholar 

  6. Kazmierski J, Kowman M, Banach M, Fendler W, Okonski P, Banys A, Jaszewski R, Rysz J, Mikhailidis DP, Sobow T, Kloszewska I. Incidence and predictors of delirium after cardiac surgery: results from The IPDACS Study. J Psychosom Res. 2010;69:179–85.

    Article  Google Scholar 

  7. Thielmann M, Sharma V, Al-Attar N, Bulluck H, Bisleri G, Bunge J, Czerny M, Ferdinandy P, Frey UH, Heusch G, Holfeld J, Kleinbongard P, Kunst G, Lang I, Lentini S, Madonna R, Meybohm P, Muneretto C, Obadia JF, Perrino C, Prunier F, Sluijter JP, Van Laake LW, Sousa-Uva M, Hausenloy DJ. ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Positin Paper: perioperative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. Eur Heart J. 2017;38:2392–407.

    Article  Google Scholar 

  8. LaPar DJ, Gillen JR, Crosby IK, Sawyer RG, Lau CL, Kron IL, Ailawadi G. Predictors of operative mortality in cardiac surgical patients with prolonged intensive care unit duration. J Am Coll Surg. 2013;216:1116–23.

    Article  Google Scholar 

  9. Dardashti A, Ederoth P, Algotsson L, Brondén B, Bjursten H. Incidence, dynamics, and prognostic value of acute kidney injury for death after cardiac surgery. J Thorac Cardiovasc Surg. 2014;147:800–7.

    Article  Google Scholar 

  10. Zakkar M, Bruno VD, Guida G, Angelini G, Chivasso P, Suleiman MS, Bryan AJ, Ascione R. Postoperative acute kidney injury defined by RIFLE criteria predicts early health outcome and long-term survival in patients undergoing redo coronary artery bypass graft surgery. J Thorac Cardiovasc Surg. 2016;152:235–42.

    Article  Google Scholar 

  11. Flu W-J, Schouten O, van Kuijk J-P, Poldermans D. Perioperative cardiac damage in vascular surgery patients. Eur J Vasc Endovasc Surg. 2010;40:1–8.

    Article  Google Scholar 

  12. Galindo RJ, Fayfman M, Umpierrez GE. Perioperative management of hyperglycemia and diabetes in cardiac surgery patients. Endocrinol Metab Clin North Am. 2018;47:203–22.

    Article  Google Scholar 

  13. Xiu F, Stanojcic M, Li D, Jeschke MG. Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol. 2014. https://doi.org/10.1155/2014/486403.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsai LL, Jensen HA, Thourani VH. Intensive Glycemic Control in Cardiac Surgery. Curr Diab Rep. 2016. https://doi.org/10.1007/s11892-016-0719-5.

    Article  PubMed  Google Scholar 

  15. Dungan KM, Braithwaite SS, Presiser JC. Stress hyperglycaemia. Lancet. 2009;373:1798–807.

    CAS  Article  Google Scholar 

  16. Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol. 2019. https://doi.org/10.26402/jpp.2019.6.01.

    Article  PubMed  Google Scholar 

  17. Quan XJ, Liang CL, Sun MZ, Zhang L, Li XL. Overexpression of steroid receptor coactivators alleviates hyperglycemia-induced endothelial cell injury in rats through activating the PI3K/Akt pathway. Acta Pharmacol Sin. 2019;40:648–57.

    CAS  Article  Google Scholar 

  18. Kyle UG, Coss Bu JA, Kennedy CE, Jefferson LS. Organ dysfunction is associated with hyperglycemia in critically ill children. Intensive Care Med. 2010;36:312–20.

    CAS  Article  Google Scholar 

  19. Lipshutz AKM, Gropper MA. Perioperative glycemic control: an evidence-based review. Anesthesiology. 2009;110(2):408–21.

    Article  Google Scholar 

  20. Navaratnarajah M, Rea R, Evans R, Gibson F, Antoniades C, Keiralla A, Demosthenous M, Kassimis G, Krasopoulos G. Effect of glycaemic control on complications following cardiac surgery: literature review. J Cardiothorac Surg. 2018. https://doi.org/10.1186/s13019-018-0700-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, Bridges CR, Haan CK, Svedjeholm R, Taegtmeyer H, Shemin RJ, Society of Thoracic Surgeons Blood Glucose Guideline Task Force. The Society of Thoracic Surgeons Practice Guideline Series: blood glucose management during adult cardiac surgery. Ann Thorac Surg. 2009;87(2):663–9.

    Article  Google Scholar 

  22. Duncan AE, Abd-Elsayed A, Maheshwari A, Xu M, Soltesz E, Koch CG. Role of intraoperative and postoperative blood glucose concentration in predicting outcomes after cardiac surgery. Anesthesiology. 2010;112:860–71.

    Article  Google Scholar 

  23. Egi M, Bellomo R, Stachowski E, French CJ, Hart G. Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology. 2006;105:244–52.

    CAS  Article  Google Scholar 

  24. Hermanides J, Vriesendorp TM, Bosman RJ, Zandstra DF, Hoekstra JB, Devries JH. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010;38:838–42.

    CAS  Article  Google Scholar 

  25. Nam K, Jeon Y, Kim WH, Jung DE, Kwon SM, Kang P, Cho YJ, Kim TK. Intraoperative glucose variability, but not average glucose concentration, may be a risk factor for acute kidney injury after cardiac surgery: a retrospective study. Can J Anaesth. 2019;66:921–33.

    Article  Google Scholar 

  26. Marsillio JE, Asaro LA, Srinivasan V, Wypij D, Sorce LR, Agus MSD, Nadkarni VM, Heart And Lung Failure-Pediatric Insulin Titration (HALF-PRINT) Study Investigators. outcomes associated with multiple organ dysfunction syndrome in critically ill children with hyperglycemia. Pediatr Crit Care Med. 2019;20:1147–56.

    PubMed  PubMed Central  Google Scholar 

  27. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.

    PubMed  Google Scholar 

  28. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    CAS  Article  Google Scholar 

  29. Ramsay J, Shernan S, Fitch J, Finnegan P, Todaro T, Filloon T, Nussmeier NA. Increased creatine kinase MB level predicts postoperative mortality after cardiac surgery independent of new Q waves. J Thorac Cardiovasc Surg. 2005;129:300–6.

    Article  Google Scholar 

  30. Légaré JF, Hirsch GM, Buth KJ, MacDougall C, Sullivan JA. Preoperative prediction of prolonged mechanical ventilation following coronary artery bypass grafting. Eur J Cardiothorac Surg. 2001;20:930–6.

    Article  Google Scholar 

  31. Nashef SAM, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734–44.

    Article  Google Scholar 

  32. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    CAS  Article  Google Scholar 

  33. Karimolla HT. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods Med Res. 2018;27:2374–83.

    Article  Google Scholar 

  34. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.

    CAS  Article  Google Scholar 

  35. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9.

    CAS  Article  Google Scholar 

  36. Jang MS, Nam JS, Jo JY, Kang CH, Ryu SA, Lee EH, Choi IC. The relationship of preoperative estimated glomerular filtration rate and outcomes after cardiovascular surgery in patients with normal serum creatinine: a retrospective cohort study. BMC Anesthesiol. 2019. https://doi.org/10.1186/s12871-019-0763-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cywinski JB, Mascha EJ, Kurz A, Sessler DI. Estimated glomerular filtration rate better predicts 30-day mortality after non-cardiac surgery than serum creatinine: a retrospective analysis of 92,888 patients. Can J Anaesth. 2015;62:745–52.

    Article  Google Scholar 

  38. Totonchi Z, Baazm F, Chitsazan M, Seifi S, Chitsazan M. Predictors of prolonged ventilation after open heart surgery. J Cardiovasc Thorac Res. 2014;6:211–6.

    Article  Google Scholar 

  39. Whitten CW, Hill GE, Ivy R, Lipton JM. Does the duration of cardiopulmonary bypass or aortic cross-clamp, in the absence of blood and/or blood product administration, influence the IL-6 response to cardiac surgery? Anesth Analg. 1998;86:28–33.

    CAS  Article  Google Scholar 

  40. Rashid N, Agarwal S, Jawed S, Yasser A, Altahmody K. Impact of cariopulmonary bypass time on postoperative duration of mechanical ventilation in patients undergoing cardiovascular surgeries: a systemic review and regression of metadata. Cureus. 2019. https://doi.org/10.7759/cureus.6088.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Girish G, Agarwal S, Satsangi DK, Tempe D, Dutta N, Pratap H. Glycemic control in cardiac surgery: rationale and current evidence. Ann Card Anaesth. 2014;17:222–8.

    CAS  Article  Google Scholar 

  42. Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, Li J, Chang B, Chang B. Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol. 2020. https://doi.org/10.3389/fendo.2020.536213.

    Article  Google Scholar 

  43. Yates AR, Dyke PCD, Taeed R, Hoffman TM, Hayes J, Feltes TF, Cua CL. Hyperglycemia is a marker for poor outcome in the postoperative pediatric cardiac patient. Pediatr Crit Care Med. 2006;7:351–5.

    Article  Google Scholar 

  44. Falcao G, Ulate K, Kouzekanani K, Bielefeld MR, Morales JM, Rotta AT. Impact of postoperative hyperglycemia following surgical repair of congenital cardiac defects. Pediatr Cardiol. 2008;29:628–36.

    Article  Google Scholar 

  45. van der Horst ICC, Nijsten MWN, Vogelzang M, Zijlstra F. Persistent hyperglycemia is an independent predictor of outcome in acute myocardial infarction. Cardiovasc Diabetol. 2007. https://doi.org/10.1186/1475-2840-6-2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu TY, Putaala J, Sharma G, Strbian D, Tatlisumak T, Davis SM, Meretoja A. Persistent hyperglycemia is associated with increased mortality after intracerebral hemorrhage. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.117.005760.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yatabe T, Yamazaki R, Kitagawa H, Okabayashi T, Yamashita K, Hanazaki K, Yokoyama M. The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients. Crit Care Med. 2011;39:575–8.

    CAS  Article  Google Scholar 

  48. Wettstein RB, Shelledy DC, Peters JI. Delivered oxygen concentration using low-flow and high-flow nasal cannulas. Respir Care. 2005;50:604–9.

    PubMed  Google Scholar 

  49. Marshall JC, Cook DJ, Christou NV, Bernard GR, Sprung CL, Sibbald WJ. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit Care Med. 1995;23:1638–52.

    CAS  Article  Google Scholar 

  50. Vincent JL, Moreno R, Takala J, Willatts S, de Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–10.

    CAS  Article  Google Scholar 

  51. Gusmao-Flores D, Salluh JIF, Chalhub RÁ, Quarantini LC. The confusion assessment method for intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care. 2012. https://doi.org/10.1186/cc11407.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Satoshi Kimura (Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan) for his support in the statistical analyses. The authors declare that we are expressing our gratitude here in pre-agreement with him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsaku Matsumoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised as affiliation 2 was not tagged to corresponding author and affiliations are correctly tagged in this version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 195 KB)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, S., Omiya, H., Fujinaka, W. et al. Association between intraoperative hyperglycemia and postoperative end-organ dysfunctions after cardiac surgery: a retrospective observational study. J Anesth 36, 174–184 (2022). https://doi.org/10.1007/s00540-021-03024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-021-03024-5

Keywords

  • Hyperglycemia
  • Cardiac surgery
  • Organ dysfunction