Skip to main content

Effects of dexmedetomidine on blood coagulation: an in vitro study using rotational thromboelastometry

Abstract

Purpose

To assess the effects of various concentrations of dexmedetomidine on the human blood coagulation profile using rotational thromboelastometry (ROTEM).

Methods

Venous blood samples were collected from 11 healthy volunteers and divided into four specimen bottles; dexmedetomidine was added to attain final sample concentrations of 0, 0.5, 1.0, and 1.5 ng/mL. ROTEM was performed on each study sample.

Results

The concentration of dexmedetomidine increased, and the ROTEM values showed a hypercoagulable state. The change in clotting time (CT) for INTEM was larger in samples with a dexmedetomidine concentration of 1.5 ng/mL (− 34%) than in the 0.5 ng/mL samples (− 16%) (P = 0.010). The change in clot formation time (CFT) for INTEM was greater in 1.5 ng/mL samples (− 16%) than in 0.5 ng/mL samples (− 4%) (P = 0.004). A greater decrease in CT for EXTEM was identified in the 1.0 ng/mL and 1.5 ng/mL samples (− 36% and − 37%, respectively) than in the 0.5 ng/mL samples (− 12%) (P = 0.003 for both categories). The change in CFT for EXTEM was greater in the 1.0 ng/mL and 1.5 ng/mL samples (− 11% and − 13%, respectively) than in the 0.5 ng/mL samples (− 4%) (P = 0.006 and P = 0.001, respectively). A bigger change in maximum clot firmness (MCF) for EXTEM was observed in the 1.5 ng/mL samples (4%) than in the 0.5 ng/mL samples (0%) (P = 0.002). The change in MCF for FIBTEM was greater in the 1.5 ng/mL samples (19%) than in the 0.5 ng/mL samples (5%) (P = 0.001).

Conclusions

All coagulation pathways showed a hypercoagulable state as the concentration of dexmedetomidine increased. Nevertheless, most of the values of ROTEM were maintained within the reference ranges.

Clinical Trial NCT04269278.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Hayashi Y, Maze M. Alpha 2 adrenoceptor agonists and anaesthesia. Br J Anaesth. 1993;71:108–18.

    CAS  Article  Google Scholar 

  2. 2.

    Aantaa R, Scheinin M. Alpha 2-adrenergic agents in anaesthesia. Acta Anaesthesiol Scand. 1993;37:433–48.

    CAS  Article  Google Scholar 

  3. 3.

    Khan ZP, Ferguson CN, Jones RM. alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia. 1999;54:146–65.

    CAS  Article  Google Scholar 

  4. 4.

    Gertler R, Brown HC, Mitchell DH, Silvius EN. Dexmedetomidine: a novel sedative-analgesic agent. Proc (Bayl Univ Med Cent). 2001;14:13–21.

    CAS  Article  Google Scholar 

  5. 5.

    Naaz S, Ozair E. Dexmedetomidine in current anaesthesia practice—a review. J Clin Diagn Res. 2014;8:GE01–4.

    PubMed  Google Scholar 

  6. 6.

    Lanza F, Beretz A, Stierle A, Hanau D, Kubina M, Cazenave JP. Epinephrine potentiates human platelet activation but is not an aggregating agent. Am J Physiol. 1988;255:H1276–88.

    CAS  PubMed  Google Scholar 

  7. 7.

    Kawamoto S, Hirakata H, Sugita N, Fukuda K. Bidirectional effects of dexmedetomidine on human platelet functions in vitro. Eur J Pharmacol. 2015;766:122–8.

    CAS  Article  Google Scholar 

  8. 8.

    Misiolek H, Wojcieszek E, Dyaczynska-Herman A. Comparison of influence of thiopentone, propofol and midazolam on blood serum concentration of noradrenaline and cortisol in patients undergoing non-toxic struma operation. Med Sci Monit. 2000;6:319–24.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chen Z, Shao DH, Mao ZM, Shi LL, Ma XD, Zhang DP. Effect of dexmedetomidine on blood coagulation in patients undergoing radical gastrectomy under general anesthesia: a prospective, randomized controlled clinical trial. Medicine (Baltimore). 2018;97: e11444.

    CAS  Article  Google Scholar 

  10. 10.

    Gousheh SMR, Olapour AR, Nesioonpour S, Rashidi M, Pooyan S. The effect of intravenous infusion of dexmedetomidine to prevent bleeding during functional endoscopic sinus surgery: a clinical trial. Anesth Pain Med. 2017;7: e12682.

    Article  Google Scholar 

  11. 11.

    Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89:228–32.

    CAS  Article  Google Scholar 

  12. 12.

    Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56:893–913.

    CAS  Article  Google Scholar 

  13. 13.

    Shin HJ, Lee H, Na HS. The effect of a mixture of 2.7% sorbitol-0.54% mannitol solution on blood coagulation: an invitro, observational healthy volunteer study using rotational thromboelastometry (ROTEM). Korean J Anesthesiol. 2019;72:143–9.

    CAS  Article  Google Scholar 

  14. 14.

    Shin HJ, Park HY, Na HS, Hong JP, Lee GW, Do SH. The effects of Plasma-Lyte 148 solution on blood coagulation: an in-vitro, volunteer study using rotational thromboelastometry. Blood Coagul Fibrinolysis. 2018;29:446–50.

    CAS  Article  Google Scholar 

  15. 15.

    Shin HJ, Na HS, Lee S, Lee GW, Do SH. The effect of hyperglycemia on blood coagulation: in vitro, observational healthy-volunteer study using rotational thromboelastometry (ROTEM). Medicine (Baltimore). 2016;95: e4703.

    CAS  Article  Google Scholar 

  16. 16.

    Martins CR, Tardelli MA, Amaral JL. Effects of dexmedetomidine on blood coagulation evaluated by thromboelastography. Rev Bras Anestesiol. 2003;53:705–19.

    CAS  Article  Google Scholar 

  17. 17.

    Mizrak A, Karatas E, Saruhan R, Kara F, Oner U, Saricicek V, Baysal E. Does dexmedetomidine affect intraoperative blood loss and clotting tests in pediatric adenotonsillectomy patients? J Surg Res. 2013;179:94–8.

    CAS  Article  Google Scholar 

  18. 18.

    Lison S, Weiss G, Spannagl M, Heindl B. Postoperative changes in procoagulant factors after major surgery. Blood Coagul Fibrinolysis. 2011;22:190–6.

    CAS  Article  Google Scholar 

  19. 19.

    Naito Y, Tamai S, Shingu K, Shindo K, Matsui T, Segawa H, Nakai Y, Mori K. Responses of plasma adrenocorticotropic hormone, cortisol, and cytokines during and after upper abdominal surgery. Anesthesiology. 1992;77:426–31.

    CAS  Article  Google Scholar 

  20. 20.

    Heemskerk JW, Bevers EM, Lindhout T. Platelet activation and blood coagulation. Thromb Haemost. 2002;88:186–93.

    CAS  Article  Google Scholar 

  21. 21.

    Görlinger K, Dirkmann D, Hanke AA. Rotational Thromboelastometry (ROTEM®). Berlin: Springer; 2016. p. 267–98.

    Google Scholar 

  22. 22.

    Gailani D, Renne T. The intrinsic pathway of coagulation: a target for treating thromboembolic disease? J Thromb Haemost. 2007;5:1106–12.

    CAS  Article  Google Scholar 

  23. 23.

    Lau HK. The interaction between platelets and factor VII/VIIa. Transfus Apher Sci. 2003;28:279–83.

    Article  Google Scholar 

  24. 24.

    Tanaka KA, Bolliger D, Vadlamudi R, Nimmo A. Rotational thromboelastometry (ROTEM)-based coagulation management in cardiac surgery and major trauma. J Cardiothorac Vasc Anesth. 2012;26:1083–93.

    Article  Google Scholar 

  25. 25.

    Gonzalez E, Moore EE, Moore HB, Chapman MP, Silliman CC, Banerjee A. Trauma-induced coagulopathy: an institution’s 35 year perspective on practice and research. Scand J Surg. 2014;103:89–103.

    CAS  Article  Google Scholar 

  26. 26.

    Korpallova B, Samos M, Bolek T, Skornova I, Kovar F, Kubisz P, Stasko J, Mokan M. Role of thromboelastography and rotational thromboelastometry in the management of cardiovascular diseases. Clin Appl Thromb Hemost. 2018;24:1199–207.

    Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyo-Seok Na.

Ethics declarations

Conflict of interest

The author(s) declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shin, HJ., Boo, G. & Na, HS. Effects of dexmedetomidine on blood coagulation: an in vitro study using rotational thromboelastometry. J Anesth 35, 633–637 (2021). https://doi.org/10.1007/s00540-021-02969-x

Download citation

Keywords

  • Blood coagulation
  • Dexmedetomidine
  • Rotational thromboelastometry