Skip to main content

Advertisement

Log in

The effect of desflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Retinopathy of prematurity (ROP) is an ocular disorder that primarily occurs in premature infants and is the most common cause of vision impairment. This study examined the effect of desflurane on angiogenesis in a mouse model of oxygen-induced retinopathy (OIR).

Methods

Mice were randomly allocated to the control (C), ROP control (Rc), or ROP with desflurane exposure (Rd) group. To induce ROP, 7-day-old mice were exposed to 75% oxygen in a chamber for 5 days [postnatal days (P) 7–12], and thereafter returned to room air. Age-matched mice exposed to room air formed the C group. The Rd group was exposed to 8% desflurane for 2 h on P12, P13, and P14 with 40% oxygen. To observe changes in angiogenesis of the retina, mice were sacrificed at P16.

Results

The ratio of avascular area/total retinal area was not changed significantly in the Rd group, compared to the Rc group. The expression of endothelial growth factor A (VEGF-A) and hypoxia inducible factor-1α (HIF-1α) in the Rd group and Rc group was not significantly different.

Conclusions

Desflurane does not have a significant influence on retinal angiogenesis via HIF-1α and VEGF-A expression in the OIR mouse model. However, these findings are not directly applicable to premature infants, and it is thus necessary to perform further studies to determine the effect of desflurane on angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Campbell K. Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust. 1951;2:48–50.

    Article  CAS  Google Scholar 

  2. Hwang JH, Lee EH, Kim EA. Retinopathy of prematurity among very-low-birth-weight infants in Korea: incidence, treatment, and risk factors. J Korean Med Sci. 2015;30:S88–94.

    Article  CAS  Google Scholar 

  3. Heidary G, Vanderveen D, Smith LE. Retinopathy of prematurity: current concepts in molecular pathogenesis. Semin Ophthalmol. 2009;24:77–81.

    Article  Google Scholar 

  4. Sapieha P, Joyal JS, Rivera JC, Kermorvant-Duchemin E, Sennlaub F, Hardy P, Lachapelle P, Chemtob S. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest. 2010;120:3022–32.

    Article  CAS  Google Scholar 

  5. Zin A, Gole GA. Retinopathy of prematurity-incidence today. Clin Perinatol. 2013;40:185–200.

    Article  Google Scholar 

  6. Vartanian RJ, Besirli CG, Barks JD, Andrews CA, Musch DC. Trends in the screening and treatment of retinopathy of prematurity. Pediatrics. 2017;139:e20161978.

    Article  Google Scholar 

  7. Kim HY, Baek SH, Baik SW, Bae SS, Ha JM, Kim M, Byeon GJ, Kim HJ, Ri HS, Kim SH. The effect of sevoflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy. J Anesth. 2018;32:204–10.

    Article  Google Scholar 

  8. Zhao J, Hao J, Fei X, Wang X, Hou Y, Deng C. Isoflurane inhibits occludin expression via up-regulation of hypoxia-inducible factor 1 alpha. Brain Res. 2014;1562:1–10.

    Article  CAS  Google Scholar 

  9. Sun Y, Li QF, Zhang Y, Hu R, Jiang H. Isoflurane preconditioning increases survival of rat skin random-pattern flaps by induction of HIF-1alpha expression. Cell Physiol Biochem. 2013;31:579–91.

    Article  CAS  Google Scholar 

  10. Li QF, Wang XR, Yang YW, Su DS. Up-regulation of hypoxia inducible factor 1alpha by isoflurane in Hep3B cells. Anesthesiology. 2006;105:1211–9.

    Article  CAS  Google Scholar 

  11. Hermann A, Mack HG, Oberhammer H. Conformations and structures of desflurane and isoflurane. J Fluorine Chem. 2000;101:223–31.

    Article  CAS  Google Scholar 

  12. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R, D'Amore PA. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 1994;35:101–11.

    CAS  PubMed  Google Scholar 

  13. Radhakrishnan N, Pillai GS, Kiran KR, Lekshmypriya A. Retinopathy of prematurity—an overview. Kerala J Ophthalmol. 2017;29:154–9.

    Article  Google Scholar 

  14. Scott A, Fruttiger M. Oxygen-induced retinopathy: a model for vascular pathology in the retina. Eye. 2010;24:416–21.

    Article  CAS  Google Scholar 

  15. Zhao H, Iwasaki M, Yang J, Savage S, Ma D. Hypoxia-inducible factor-1: a possible link between inhalational anesthetics and tumor progression? Acta Anaesthesiol Taiwan. 2014;52:70–6.

    Article  CAS  Google Scholar 

  16. Wiesmann C, Fuh G, Christinger HW, Eigenbrot C, Wells JA, Vos AM. Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell. 1997;91:695–704.

    Article  CAS  Google Scholar 

  17. Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9:267–85.

    Article  CAS  Google Scholar 

  18. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997;22:251–6.

    Article  CAS  Google Scholar 

  19. Afuwape AO, Kiriakidis S, Paleolog EM. The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol Histopathol. 2002;17:961–72.

    CAS  PubMed  Google Scholar 

  20. Sale SM, Read JA, Stoddart PA, Wolf AR. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96:774–8.

    Article  CAS  Google Scholar 

  21. Giles EK, Lawrence AJ, Duncan JR. Exploring the modulation of hypoxia-inducible factor (HIF)-1alpha by volatile anesthetics as a possible mechanism underlying volatile anesthetic-induced CNS injury. Neurochem Res. 2014;39:1640–7.

    Article  CAS  Google Scholar 

  22. Datta K, Li J, Bhattacharya R, Gasparian L, Wang E, Mukhopadhyay D. Protein kinase C zeta transactivates hypoxia-inducible factor alpha by promoting its association with p300 in renal cancer. Cancer Res. 2004;64:456–62.

    Article  CAS  Google Scholar 

  23. Mellidis K, Ordodi V, Galatou E, Sandesc D, Bubenek S, Duicu O, Muntean D, Lazou A. Activation of prosurvival signaling pathways during the memory phase of volatile anesthetic preconditioning in human myocardium: a pilot study. Mol Cell Biochem. 2014;388:195–201.

    Article  CAS  Google Scholar 

  24. Toma O, Weber NC, Wolter JI, Obal D, Preckel B, Schlack W. Desflurane preconditioning induces time-dependent activation of protein kinase C epsilon and extracellular signal-regulated kinase 1 and 2 in the rat heart in vivo. Anesthesiology. 2004;101:1372–80.

    Article  CAS  Google Scholar 

  25. Iwasaki M, Zhao H, Jaffer T, Unwith S, Benzonana L, Lian Q, Sakamoto A, Ma D. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016;7:26042–56.

    Article  Google Scholar 

  26. Müller-Edenborn B, Roth-Z'graggen B, Bartnicka K, Borgeat A, Hoos A, Borsig L, Beck-Schimmer B. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology. 2012;117:293–301.

    Article  Google Scholar 

  27. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology. 2011;115:979–91.

    Article  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hoon Baek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri, HS., Bae, S.S., Ha, J.M. et al. The effect of desflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy. J Anesth 34, 352–357 (2020). https://doi.org/10.1007/s00540-020-02752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-020-02752-4

Keywords

Navigation