Skip to main content

Advertisement

Log in

Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The general anesthetics propofol and etomidate mainly exert their anesthetic actions via GABA A receptor (GABAA-R). The GABAA-R activity is influenced by phospholipase C-related inactive protein type-1 (PRIP-1), which is related to trafficking and subcellular localization of GABAA-R. PRIP-1 deficiency attenuates the behavioral reactions to propofol but not etomidate. However, the effect of these anesthetics and of PRIP-1 deficiency on brain activity of CNS are still unclear. In this study, we examined the effects of propofol and etomidate on the electroencephalogram (EEG).

Methods

The cortical EEG activity was recorded in wild-type (WT) and PRIP-1 knockout (PRIP-1 KO) mice. All recorded EEG data were offline analyzed, and the power spectral density and 95% spectral edge frequency of EEG signals were compared between genotypes before and after injections of anesthetics.

Results

PRIP-1 deficiency induced increases in EEG absolute powers, but did not markedly change the relative spectral powers during waking and sleep states in the absence of anesthesia. Propofol administration induced increases in low-frequency relative EEG activity and decreases in SEF95 values in WT but not in PRIP-1 KO mice. Following etomidate injection, low-frequency EEG power was increased in both genotype groups. At high frequency, the relative power in PRIP-1 KO mice was smaller than that in WT mice.

Conclusions

The lack of PRIP-1 disrupted the EEG power distribution, but did not affect the depth of anesthesia after etomidate administration. Our analyses suggest that PRIP-1 is differentially involved in anesthetic EEG activity with the regulation of GABAA-R activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G. Cortical firing and sleep homeostasis. Neuron. 2009;63(6):865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL, Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA. 2013;110(12):E1142–E1151151.

    Article  PubMed  Google Scholar 

  3. Wang K, Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW. EEG slow-wave coherence changes in propofol-induced general anesthesia: experiment and theory. Front Syst Neurosci. 2014;8:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuizenga K, Wierda JM, Kalkman CJ. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth. 2001;86(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gabor G, Judit T, Zsolt I. Comparison of propofol and etomidate regarding impact on seizure threshold during electroconvulsive therapy in patients with schizophrenia. Neuropsychopharmacol Hung. 2007;9(3):125–30.

    PubMed  Google Scholar 

  7. Tan HL, Lee CY. Comparison between the effects of propofol and etomidate on motor and electroencephalogram seizure duration during electroconvulsive therapy. Anaesth Intensive Care. 2009;37(5):807–14.

    Article  CAS  PubMed  Google Scholar 

  8. Drexler B, Jurd R, Rudolph U, Antkowiak B. Distinct actions of etomidate and propofol at beta3-containing gamma-aminobutyric acid type A receptors. Neuropharmacology. 2009;57(4):446–55.

    Article  CAS  PubMed  Google Scholar 

  9. Kim MG, Park SW, Kim JH, Lee J, Kae SH, Jang HJ, Koh DH, Choi MH. Etomidate versus propofol sedation for complex upper endoscopic procedures: a prospective double-blinded randomized controlled trial. Gastrointest Endosc. 2017;86(3):452–61.

    Article  PubMed  Google Scholar 

  10. Jurd R, Arras M, Lambert S, Drexler B, Siegwart R, Crestani F, Zaugg M, Vogt KE, Ledermann B, Antkowiak B, Rudolph U. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J. 2003;17(2):250–2.

    Article  CAS  PubMed  Google Scholar 

  11. Feng HJ, Macdonald RL. Multiple actions of propofol on alphabetagamma and alphabetadelta GABAA receptors. Mol Pharmacol. 2004;66(6):1517–24.

    Article  CAS  PubMed  Google Scholar 

  12. Sanchis-Segura C, Cline B, Jurd R, Rudolph U, Spanagel R. Etomidate and propofol-hyposensitive GABAA receptor beta3(N265M) mice show little changes in acute alcohol sensitivity but enhanced tolerance and withdrawal. Neurosci Lett. 2007;416(3):275–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hill-Venning C, Belelli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol. 1997;120(5):749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Belelli D, Muntoni AL, Merrywest SD, Gentet LJ, Casula A, Callachan H, Madau P, Gemmell DK, Hamilton NM, Lambert JJ, Sillar KT, Peters JA. The in vitro and in vivo enantioselectivity of etomidate implicates the GABAA receptor in general anaesthesia. Neuropharmacology. 2003;45(1):57–71.

    Article  CAS  PubMed  Google Scholar 

  15. Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci. 2005;25(50):11513–20.

    Article  CAS  PubMed  Google Scholar 

  16. Cirone J, Rosahl TW, Reynolds DS, Newman RJ, O'Meara GF, Hutson PH, Wafford KA. Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology. 2004;100(6):1438–45.

    Article  CAS  PubMed  Google Scholar 

  17. Haenschel C, Baldeweg T, Croft RJ, Whittington M, Gruzelier J. Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models. Proc Natl Acad Sci USA. 2000;97(13):7645–50.

    Article  CAS  PubMed  Google Scholar 

  18. Terunuma M, Jang IS, Ha SH, Kittler JT, Kanematsu T, Jovanovic JN, Nakayama KI, Akaike N, Ryu SH, Moss SJ, Hirata M. GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci. 2004;24(32):7074–84.

    Article  CAS  PubMed  Google Scholar 

  19. Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Moss SJ, Nabekura J, Hirata M. Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underlying brain-derived neurotrophic factor-dependent regulation of GABAergic inhibition. J Biol Chem. 2006;281(31):22180–9.

    Article  CAS  PubMed  Google Scholar 

  20. Kanematsu T, Mizokami A, Watanabe K, Hirata M. Regulation of GABA(A)-receptor surface expression with special reference to the involvement of GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci. 2007;104(4):285–92.

    Article  CAS  PubMed  Google Scholar 

  21. Yanagihori S, Terunuma M, Koyano K, Kanematsu T, Ho Ryu S, Hirata M. Protein phosphatase regulation by PRIP, a PLC-related catalytically inactive protein–implications in the phospho-modulation of the GABAA receptor. Adv Enzyme Regul. 2006;46:203–22.

    Article  CAS  PubMed  Google Scholar 

  22. Migita K, Tomiyama M, Yamada J, Fukuzawa M, Kanematsu T, Hirata M, Ueno S. Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice. Mol Pain. 2011;7:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu G, Yoshida S, Migita K, Yamada J, Mori F, Tomiyama M, Wakabayashi K, Kanematsu T, Hirata M, Kaneko S, Ueno S, Okada M. Dysfunction of extrasynaptic GABAergic transmission in phospholipase C-related, but catalytically inactive protein 1 knockout mice is associated with an epilepsy phenotype. J Pharmacol Exp Ther. 2012;340(3):520–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nikaido Y, Furukawa T, Shimoyama S, Yamada J, Migita K, Koga K, Kushikata T, Hirota K, Kanematsu T, Hirata M, Ueno S. Propofol anesthesia is reduced in phospholipase c-related inactive protein type-1 knockout mice. J Pharmacol Exp Ther. 2017;361(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  25. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  CAS  Google Scholar 

  26. Guan Z, Vgontzas AN, Bixler EO, Fang J. Sleep is increased by weight gain and decreased by weight loss in mice. Sleep. 2008;31(5):627–33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kushikata T, Sawada M, Niwa H, Kudo T, Kudo M, Tonosaki M, Hirota K. Ketamine and propofol have opposite effects on postanesthetic sleep architecture in rats: relevance to the endogenous sleep-wakefulness substances orexin and melanin-concentrating hormone. J Anesth. 2016;30(3):437–43.

    Article  PubMed  Google Scholar 

  28. Rudolph U, Mohler H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol. 2004;44:475–98.

    Article  CAS  PubMed  Google Scholar 

  29. Ferguson C, Hardy SL, Werner DF, Hileman SM, Delorey TM, Homanics GE. New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neurosci. 2007;8:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLorey TM, Handforth A, Anagnostaras SG, Homanics GE, Minassian BA, Asatourian A, Fanselow MS, Delgado-Escueta A, Ellison GD, Olsen RW. Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci. 1998;18(20):8505–14.

    Article  CAS  PubMed  Google Scholar 

  31. Liljelund P, Handforth A, Homanics GE, Olsen RW. GABAA receptor beta3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in beta3 subunit levels, EEG, and behavior. Brain Res Dev Brain Res. 2005;157(2):150–61.

    Article  CAS  PubMed  Google Scholar 

  32. Krasowski MD, Rick CE, Harrison NL, Firestone LL, Homanics GE. A deficit of functional GABA(A) receptors in neurons of beta 3 subunit knockout mice. Neurosci Lett. 1998;240(2):81–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wisor JP, DeLorey TM, Homanics GE, Edgar DM. Sleep states and sleep electroencephalographic spectral power in mice lacking the beta 3 subunit of the GABA(A) receptor. Brain Res. 2002;955(1–2):221–8.

    Article  CAS  PubMed  Google Scholar 

  34. Sidorov MS, Deck GM, Dolatshahi M, Thibert RL, Bird LM, Chu CJ, Philpot BD. Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J Neurodev Disord. 2017;9:17.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kanematsu T, Jang IS, Yamaguchi T, Nagahama H, Yoshimura K, Hidaka K, Matsuda M, Takeuchi H, Misumi Y, Nakayama K, Yamamoto T, Akaike N, Hirata M. Role of the PLC-related, catalytically inactive protein p130 in GABA(A) receptor function. EMBO J. 2002;21(5):1004–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flores FJ, Hartnack KE, Fath AB, Kim SE, Wilson MA, Brown EN, Purdon PL. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2017;114(32):E6660–E666868.

    Article  CAS  PubMed  Google Scholar 

  37. Lambert S, Arras M, Vogt KE, Rudolph U. Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol. 2005;516(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  38. Liao M, Sonner JM, Jurd R, Rudolph U, Borghese CM, Harris RA, Laster MJ, Eger EI, 2nd. Beta3-containing gamma-aminobutyric acid A receptors are not major targets for the amnesic and immobilizing actions of isoflurane. Anesth Analg. 2005;101(2):412–8 (table of contents).

  39. Reynolds DS, Rosahl TW, Cirone J, O'Meara GF, Haythornthwaite A, Newman RJ, Myers J, Sur C, Howell O, Rutter AR, Atack J, Macaulay AJ, Hadingham KL, Hutson PH, Belelli D, Lambert JJ, Dawson GR, McKernan R, Whiting PJ, Wafford KA. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci. 2003;23(24):8608–17.

    Article  CAS  PubMed  Google Scholar 

  40. Drexler B, Roether CL, Jurd R, Rudolph U, Antkowiak B. Opposing actions of etomidate on cortical theta oscillations are mediated by different gamma-aminobutyric acid type A receptor subtypes. Anesthesiology. 2005;102(2):346–52.

    Article  CAS  PubMed  Google Scholar 

  41. Butovas S, Rudolph U, Jurd R, Schwarz C, Antkowiak B. Activity patterns in the prefrontal cortex and hippocampus during and after awakening from etomidate anesthesia. Anesthesiology. 2010;113(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  42. Uji A, Matsuda M, Kukita T, Maeda K, Kanematsu T, Hirata M. Molecules interacting with PRIP-2, a novel Ins(1,4,5)P3 binding protein type 2: comparison with PRIP-1. Life Sci. 2002;72(4–5):443–53.

    Article  CAS  PubMed  Google Scholar 

  43. Brunig I, Scotti E, Sidler C, Fritschy JM. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. J Comp Neurol. 2002;443(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  44. Sieghart W, Sperk G. Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem. 2002;2(8):795–816.

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Luo M, Li C, Wang G. Propofol post-conditioning induced long-term neuroprotection and reduced internalization of AMPAR GluR2 subunit in a rat model of focal cerebral ischemia/reperfusion. J Neurochem. 2011;119(1):210–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol. 1991;104(3):619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ. Propofol inhibits phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in neurons. Anesthesiology. 2006;104(4):763–9.

    Article  CAS  PubMed  Google Scholar 

  48. Qiu Q, Sun L, Wang XM, Lo ACY, Wong KL, Gu P, Wong SCS, Cheung CW. Propofol produces preventive analgesia via GluN2B-containing NMDA Receptor/ERK1/2 Signaling Pathway in a rat model of inflammatory pain. Mol Pain. 2017;13:1744806917737462.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen D, Qi X, Zhuang R, Cao J, Xu Y, Huang X, Li Y. Prenatal propofol exposure downregulates NMDA receptor expression and causes cognitive and emotional disorders in rats. Eur J Pharmacol. 2019;843:268–76.

    Article  CAS  PubMed  Google Scholar 

  50. Lin CR, Cheng JT, Lin FC, Chou AK, Lee TC, Chen JT, Yang LC. Effect of thiopental, propofol, and etomidate on vincristine toxicity in PC12 cells. Cell Biol Toxicol. 2002;18(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  51. Kassem LA, Gamal El-Din MM, Yassin NA. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin. Drug Discov Ther. 2011;5(3):136–43.

    Article  CAS  PubMed  Google Scholar 

  52. Putzke C, Hanley PJ, Schlichthörl G, Preisig-Müller R, Rinné S, Anetseder M, Eckenhoff R, Berkowitz C, Vassiliou T, Wulf H, Eberhart L. Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1. Am J Physiol Cell Physiol. 2007;293(4):C1319–C13261326.

    Article  CAS  PubMed  Google Scholar 

  53. Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, Chen X, Bayliss DA. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30(22):7691–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9(5):370–86.

    Article  CAS  PubMed  Google Scholar 

  55. Sugiyama G, Takeuchi H, Kanematsu T, Gao J, Matsuda M, Hirata M. Phospholipase C-related but catalytically inactive protein, PRIP as a scaffolding protein for phospho-regulation. Adv Biol Regul. 2013;53(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  56. Shortal BP, Reitz SL, Aggarwal A, Meng QC, McKinstry-Wu AR, Kelz MB, Proekt A. Development and validation of brain target controlled infusion of propofol in mice. PLoS ONE. 2018;13(4):e0194949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G. GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neurosci. 2000;101(4):815–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Young Scientists (B) #JP16K20888 (to T. F.), Grants-in-Aid for Scientific Research (C) # JP18K08846 (to S. U.), and a Hirosaki University Institutional Research Grant (to S. U.). All authors concur that there is no conflict of interest with regard to manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Ueno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1899 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, T., Nikaido, Y., Shimoyama, S. et al. Phospholipase C-related inactive protein type-1 deficiency affects anesthetic electroencephalogram activity induced by propofol and etomidate in mice. J Anesth 33, 531–542 (2019). https://doi.org/10.1007/s00540-019-02663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-019-02663-z

Keywords

Navigation