Skip to main content
Log in

Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Ischemic–hypoxic insult leads to detrimental effects on multiple organs. The brain is especially vulnerable, and it is hard to regenerate once damaged. Currently, therapeutic options are very limited. Previous studies have reported neuroprotective effects of neurotropin, a non-protein extract derived from the inflamed skin of rabbits inoculated with vaccinia virus, using a murine model of peripheral nerve injury and cultured cell lines. However, whether neurotropin might have protective effects against brain injuries remains unclear. We, therefore, investigated the neuroprotective effect of neurotropin and possible underlying mechanisms, using a mouse model of hypoxic–ischemic brain injury.

Methods

Hypoxic–ischemic brain injury was induced via a combination of the left common carotid artery occlusion and exposure to hypoxic environment (8% oxygen) in adult male C57BL/6 mice. Immediately following induction of hypoxia–ischemia, mice received either saline or 2.4 units of neurotropin. The survival rate, neurological function, infarct volume, and expression of inflammatory cytokines were evaluated.

Results

Compared to the control group, the neurotropin group exhibited a significantly higher survival rate (100% vs. 62.5%, p < 0.05) and lower neurological deficit scores (1; 0–2 vs. 3; 0–5, median; range, p < 0.05) after the hypoxic–ischemic insult. The administration of neurotropin also reduced infarct volume (18.3 ± 5.1% vs. 38.3 ± 7.2%, p < 0.05) and mRNA expression of pro-inflammatory cytokines.

Conclusions

The post-treatment with neurotropin improved survival and neurological outcomes after hypoxic–ischemic insult. Our results indicate that neurotropin has neuroprotective effects against hypoxic–ischemic brain injury by suppressing pro-inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hankey GJ. The global and regional burden of stroke. Lancet Glob Health. 2013;1:e239–40.

    Article  PubMed  Google Scholar 

  2. Nakajo Y, Yang D, Takahashi JC, Zhao Q, Kataoka H, Yanamoto H. ERV enhances spatial learning and prevents the development of infarcts, accompanied by upregulated BDNF in the cortex. Brain Res. 2015;1610:110–23.

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa T, Yasuda S, Minoda S, Ibuki T, Fukuhara K, Iwanaga Y, Ariyoshi T, Sasaki H. Neurotropin((R)) ameliorates chronic pain via induction of brain-derived neurotrophic factor. Cell Mol Neurobiol. 2015;35:231–41.

    Article  CAS  PubMed  Google Scholar 

  4. Yoshii H, Fukata Y, Yamamoto K, Naiki M, Suehiro S, Yanagihara Y, Okudaira H. Neurotropin inhibits accumulation of eosinophils induced by allergen through the suppression of sensitized T-cells. Int J Immunopharmacol. 1995;17:879–86.

    Article  CAS  PubMed  Google Scholar 

  5. Nishimoto S, Okada K, Tanaka H, Okamoto M, Fujisawa H, Okada T, Naiki M, Murase T, Yoshikawa H. Neurotropin attenuates local inflammatory response and inhibits demyelination induced by chronic constriction injury of the mouse sciatic nerve. Biologicals. 2016;44:206–11.

    Article  CAS  PubMed  Google Scholar 

  6. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol. 1981;9:131–41.

    Article  PubMed  Google Scholar 

  7. Cowper-Smith CD, Anger GJ, Magal E, Norman MH, Robertson GS. Delayed administration of a potent cyclin dependent kinase and glycogen synthase kinase 3 beta inhibitor produces long-term neuroprotection in a hypoxia-ischemia model of brain injury. Neuroscience. 2008;155:864–75.

    Article  CAS  PubMed  Google Scholar 

  8. Hedna VS, Ansari S, Shahjouei S, Cai PY, Ahmad AS, Mocco J, Qureshi AI. Validity of laser doppler flowmetry in predicting outcome in murine intraluminal middle cerebral artery occlusion stroke. J Vasc Interv Neurol. 2015;8:74–82.

    PubMed  PubMed Central  Google Scholar 

  9. Kotoda M, Ishiyama T, Mitsui K, Hishiyama S, Matsukawa T. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice. J Anesth. 2018;32:244–9.

    Article  PubMed  Google Scholar 

  10. Toda K, Muneshige H, Ikuta Y. Antinociceptive effects of neurotropin in a rat model of painful peripheral mononeuropathy. Life Sci. 1998;62:913–21.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki T, Li YH, Mashimo T. The antiallodynic and antihyperalgesic effects of neurotropin in mice with spinal nerve ligation. Anesth Analg. 2005;101:793–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G, Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia. Autophagy. 2014;10:1535–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. 2014;89:e51729.

    Google Scholar 

  14. Rosner MJ, Rosner SD, Johnson AH. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995;83:949–62.

    Article  CAS  PubMed  Google Scholar 

  15. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    Article  CAS  PubMed  Google Scholar 

  16. Sobowale OA, Parry-Jones AR, Smith CJ, Tyrrell PJ, Rothwell NJ, Allan SM. Interleukin-1 in Stroke: from bench to bedside. Stroke. 2016;47:2160–7.

    Article  PubMed  Google Scholar 

  17. Cojocaru IM, Cojocaru M, Tanasescu R, Iliescu I, Dumitrescu L, Silosi I. Expression of IL-6 activity in patients with acute ischemic stroke. Rom J Intern Med. 2009;47:393–6.

    CAS  PubMed  Google Scholar 

  18. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132:443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gredal H, Thomsen BB, Boza-Serrano A, Garosi L, Rusbridge C, Anthony D, Moller A, Finsen B, Deierborg T, Lambertsen KL, Berendt M. Interleukin-6 is increased in plasma and cerebrospinal fluid of community-dwelling domestic dogs with acute ischaemic stroke. Neuroreport. 2017;28:134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei J, Sun C, Liu C, Zhang Q. Effects of rat anti-mouse interleukin-6 receptor antibody on the recovery of cognitive function in stroke mice. Cell Mol Neurobiol. 2018;38:507–15.

    Article  CAS  PubMed  Google Scholar 

  21. Armstead WM, Hekierski H, Pastor P, Yarovoi S, Higazi AA, Cines DB. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl Stroke Res. 2019;10:104–11.

    Article  CAS  PubMed  Google Scholar 

  22. Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res. 2015;1596:13–21.

    Article  CAS  PubMed  Google Scholar 

  23. Zheng Y, Fang W, Fan S, Liao W, Xiong Y, Liao S, Li Y, Xiao S, Liu J. Neurotropin inhibits neuroinflammation via suppressing NF-kappaB and MAPKs signaling pathways in lipopolysaccharide-stimulated BV2 cells. J Pharmacol Sci. 2018;136:242–8.

    Article  CAS  PubMed  Google Scholar 

  24. Liu F, Schafer DP, McCullough LD. TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods. 2009;179:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohtaki H, Yin L, Nakamachi T, Dohi K, Kudo Y, Makino R, Shioda S. Expression of tumor necrosis factor alpha in nerve fibers and oligodendrocytes after transient focal ischemia in mice. Neurosci Lett. 2004;368:162–6.

    Article  CAS  PubMed  Google Scholar 

  26. Clausen BH, Lambertsen KL, Meldgaard M, Finsen B. A quantitative in situ hybridization and polymerase chain reaction study of microglial-macrophage expression of interleukin-1beta mRNA following permanent middle cerebral artery occlusion in mice. Neuroscience. 2005;132:879–92.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki S, Tanaka K, Nogawa S, Nagata E, Ito D, Dembo T, Fukuuchi Y. Temporal profile and cellular localization of interleukin-6 protein after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 1999;19:1256–62.

    Article  CAS  PubMed  Google Scholar 

  28. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–57.

    Article  PubMed  Google Scholar 

  29. Itoh ET. Hata, Analgesic mechanism of neurotropin: relation to the serotonergic system and influence of spinal cord transection. Jpn J Pharmacol. 1989;51:267–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Japan Society for Promotion of Science (JSPS KAKENHI Grant number 15K10507 and 17K11044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kotoda.

Ethics declarations

Conflict of interest

The author declares that they have no conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hishiyama, S., Kotoda, M., Ishiyama, T. et al. Neuroprotective effects of neurotropin in a mouse model of hypoxic–ischemic brain injury. J Anesth 33, 495–500 (2019). https://doi.org/10.1007/s00540-019-02655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-019-02655-z

Keywords

Navigation