Journal of Anesthesia

, Volume 32, Issue 2, pp 204–210 | Cite as

The effect of sevoflurane on retinal angiogenesis in a mouse model of oxygen-induced retinopathy

  • Hee Young Kim
  • Seung-Hoon Baek
  • Seong Wan Baik
  • Sun Sik Bae
  • Jung Min Ha
  • Minkyoung Kim
  • Gyeong-Jo Byeon
  • Hye Jin Kim
  • Hyun-Su Ri
  • So Hyun Kim
Original Article



Sevoflurane is commonly used in general anesthesia for premature neonates. The main mechanism of retinopathy of prematurity (ROP) is increased levels of vascular endothelial growth factor (VEGF). For the investigation of sevoflurane’s effect on angiogenesis, the angiogenesis and VEGF expression in the retina were measured after administering sevoflurane in an oxygen-induced retinopathy mice model.

Materials and methods

The mice were divided into the normoxic group (Nc and Ns group; n = 6) and the ROP group (C, Rc, and Rs group; n = 6). Rc group were exposed to 75% oxygen for 5 days beginning on postnatal day (P) 7, and then returned to room air. Age-matched mice in the C group were exposed to room air. To observe angiogenesis of the retina, the mice were sacrificed on P16. The Rs group was exposed to 2 vol% sevoflurane for 2 h on P12, P13, and P14 with 40% oxygen.


The angiogenic area and the spreading distance of vessels on P4 were statistically decreased in the Ns group, compared to the Nc group. The avascular area on P16 was significantly increased and the expression of VEGF was suppressed in the Rs group compared to the Rc group.


Sevoflurane can inhibit retinal angiogenesis via suppressing VEGF expression in an OIR mice model with exposure to relative hypoxia. Nevertheless, it is still difficult to apply the results of this study immediately to humans because of the heterogeneity of responses to sevoflurane.


Angiogenesis Oxygen Retinopathy of prematurity Sevoflurane Vascular endothelial growth factor 



The authors thank the Department of Pharmacology, Gene and Cell Therapy Center for Vessel-associated Disease, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea for the excellent technical assistance.

Author contributions

HYK, S-HB, SSB, JMH, and MK: study design and data analysis. HYK, S-HB, SWB, SSB, JMH, G-JB, HJK, H-SR, and SHK: manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have competing interests.


  1. 1.
    Beck S, Wojdyla D, Say L, Betran AP, Merialdi M, Requejo JH, Rubens C, Menon R, Van Look PF. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010;88(1):31–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Austeng D, Källen KB, Ewald UW, Jakobsson PG, Holmström GE. Incidence of retinopathy of prematurity in infants born before 27 weeks’ gestation in Sweden. Arch Ophthalmol. 2009;127(10):1315–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis. 2007;10(2):133–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Löfqvist C, Hellström A, Smith LE. The mouse retina as an angiogenesis model. Investig Ophthalmol Vis Sci. 2010;51(6):2813–26.CrossRefGoogle Scholar
  5. 5.
    Anand D, Etuwewe B, Clark D, Yoxall C. Anaesthesia for treatment of retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2007;92(2):F154–5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chen J, Stahl A, Hellstrom A, Smith LE. Current update on retinopathy of prematurity: screening and treatment. Curr Opin Pediatr. 2011;23(2):173.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hartrey R. Anaesthesia for the laser treatment of neonates with retinopathy of prematurity. Eye. 2007;21(8):1025–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Neema C. Anesthetic concerns in patients with retinopathy of prematurity. J Case Rep. 2013;3(1):59–63.CrossRefGoogle Scholar
  9. 9.
    Hassid S, Nicaise C, Michel F, Vialet R, Thomachot L, Lagier P, Martin C. Randomized controlled trial of sevoflurane for intubation in neonates. Pediatr Anesth. 2007;17(11):1053–8.CrossRefGoogle Scholar
  10. 10.
    Yu L, Sun H, Yao L, Feng Y, Yang B. Comparison of effective inspired concentration of sevoflurane in preterm infants with different postconceptual ages. Pediatr Anesth. 2011;21(2):148–52.CrossRefGoogle Scholar
  11. 11.
    Hellström A, Smith LE, Dammann O. Retinopathy of prematurity. Lancet. 2013;382(9902):1445–57.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lu Y, Wang J, Yan J, Yang Y, Sun Y, Huang Y, Hu R, Zhang Y, Jiang H. Sevoflurane attenuate hypoxia-induced VEGF level in tongue squamous cell carcinoma cell by upregulating the DNA methylation states of the promoter region. Biomed Pharmacother. 2015;71:139–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Shi Q, Zhang S, Liu L, Chen Q, Yu L, Zhang F, Zhang F, Yan M. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth. 2014;2014:aeu402.Google Scholar
  14. 14.
    Smith L, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA. Oxygen-induced retinopathy in the mouse. Investig Ophthalmol Vis Sci. 1994;35(1):101–11.Google Scholar
  15. 15.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. J Am Soc Anesthesiol. 2011;114(3):578–87.CrossRefGoogle Scholar
  17. 17.
    Liu C, Shen Z, Liu Y, Peng J, Miao L, Zeng W, Li Y. Sevoflurane protects against intestinal ischemia–reperfusion injury partly by phosphatidylinositol 3 kinases/Akt pathway in rats. Surgery. 2015;157(5):924–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Tian S-Y, Li Y-W, Zhang L, Yu J-B, Li J, Chen YY, Wang YX, Liang Y, Zhang XS, Wang WS, Liu HG. Sevoflurane preconditioning improving cerebral focal ischemia–reperfusion damage in a rat model via PI3K/Akt signaling pathway. Gene. 2015;569(1):60–5.CrossRefPubMedGoogle Scholar
  19. 19.
    Lai Z, Zhang L, Su J, Cai D, Xu Q. Sevoflurane postconditioning improves long-term learning and memory of neonatal hypoxia-ischemia brain damage rats via the PI3K/Akt-mPTP pathway. Brain Res. 2016;1630:25–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling. Circ Res. 2000;86(1):4–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang L, Zhang J, Dong Y, Swain CA, Zhang Y, Xie Z. The potential dual effects of sevoflurane on AKT/GSK3β signaling pathway. Med Gas Res. 2014;4(1):1.CrossRefGoogle Scholar
  22. 22.
    Rundhaug JE. Matrix metalloproteinases and angiogenesis. J Cell Mol Med. 2005;9(2):267–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Barnett JM, McCollum GW, Fowler JA, Duan JJ-W, Kay JD, Liu R-Q, Bingaman DP, Penn JS. Pharmacologic and genetic manipulation of MMP-2 and-9 affects retinal neovascularization in rodent models of OIR. Investig Ophthalmol Vis Sci. 2007;48(2):907–15.CrossRefGoogle Scholar
  24. 24.
    Liang H, Gu M, Yang C, Wang H, Wen X, Zhou Q. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth. 2012;26(3):381–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. J Am Soc Anesthesiol. 2009;110(4):796–804.CrossRefGoogle Scholar
  26. 26.
    Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;2011:peds. 2011-0351.Google Scholar

Copyright information

© Japanese Society of Anesthesiologists 2018

Authors and Affiliations

  1. 1.Department of Anesthesia and Pain MedicinePusan National University Yangsan HospitalYangsanRepublic of Korea
  2. 2.Department of Pharmacology, Gene and Cell Therapy Center for Vessel-associated Disease, Medical Research InstitutePusan National University School of MedicineYangsanRepublic of Korea

Personalised recommendations