Advertisement

Journal of Anesthesia

, Volume 30, Issue 6, pp 1014–1019 | Cite as

TRPV4 ion channel as important cell sensors

  • Koji ShibasakiEmail author
Invited Review Article

Abstract

This review provides a summary of the physiological significance of the TRPV4 ion channel. Although TRPV4 was initially characterized as an osmosensor, we found that TRPV4 can also act as a thermosensor or a mechanosensor in brain neurons or epithelial cells in the urinary bladder. Here, we summarize the newly characterized functions of TRPV4, including the research progress that has been made toward our understanding of TRPV4 physiology, and discuss other recent data pertaining to TRPV4. It is thought that TRPV4 may be an important drug target based on its broad expression patterns and important physiological functions. Possible associations between diseases and TRPV4 are also discussed.

Keywords

TRPV4 Thermosensor Mechanosensor Mechanical stimulus Brain temperature 

Notes

Acknowledgments

The author acknowledges the following funding sources: Grants-in-Aid for Scientific Research (KAKENHI Project No. 15H05934 ‘Thermal Biology’ and 15H03000) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; by a Grant from Uehara Memorial Foundation; by a Grant from Takeda Science Foundation, Tokyo, Japan; by a Grant from the Sumitomo Foundation; by a Grant from the Brain Science Foundation; by a Grant from Narishige Neuroscience Research Foundation; by a Grant from Salt Science Research Foundation No. 14C2; and by a Grant from the Ichiro Kanehara Foundation.

References

  1. 1.
    Shibasaki K. Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci. 2016;66(5):359–65.CrossRefPubMedGoogle Scholar
  2. 2.
    Clapham DE. TRP channels as cellular sensors. Nature (Lond). 2003;426:517–24.CrossRefGoogle Scholar
  3. 3.
    Tominaga M, Caterina MJ. Thermosensation and pain. J Neurobiol. 2004;61:3–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim Biophys Acta. 2007;1772:989–1003.CrossRefPubMedGoogle Scholar
  5. 5.
    Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. Adv Exp Med Biol. 2011;704:615–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Cao E, Liao M, Cheng Y, Julius D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature (Lond). 2013;504:113–8.CrossRefGoogle Scholar
  7. 7.
    Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature (Lond). 2015;520:511–7.CrossRefGoogle Scholar
  8. 8.
    Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M. Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain. 2011;152:936–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Fleig A, Penner R. The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci. 2004;25:633–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol. 2000;2:695–702.CrossRefPubMedGoogle Scholar
  11. 11.
    Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–35.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lacampagne A, Gannier F, Argibay J, Garnier D, Le Guennec JY. The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta. 1994;1191:205–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch. 2001;443:227–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldenberg NM, Ravindran K, Kuebler WM. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:421–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Ryskamp DA, Jo AO, Frye AM, Vazquez-Chona F, MacAulay N, Thoreson WB, Krizaj D. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J Neurosci. 2014;34:15689–700.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature (Lond). 2003;424:434–8.CrossRefGoogle Scholar
  17. 17.
    Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem. 2002;277:47044–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22:6408–14.PubMedGoogle Scholar
  19. 19.
    Chung MK, Lee H, Caterina MJ. Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem. 2003;278:32037–46.CrossRefPubMedGoogle Scholar
  20. 20.
    Shibasaki K, Suzuki M, Mizuno A, Tominaga M. Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci. 2007;27:1566–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, Story GM, Colley S, Hogenesch JB, McIntyre P, Bevan S, Patapoutian, A. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch. 2009;458:1093–102.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M. The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem. 2010;285:18749–58.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kida N, Sokabe T, Kashio M, Haruna K, Mizuno Y, Suga Y, Nishikawa K, Kanamaru A, Hongo M, Oba A, Tominaga M. Importance of transient receptor potential vanilloid 4 (TRPV4) in epidermal barrier function in human skin keratinocytes. Pflugers Arch. 2012;463:715–25.CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Y, Fang Q, Wang Z, Zhang JY, MacLeod AS, Hall RP, Liedtke WB. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J Biol Chem. 2016;291:10252–62.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD. Hypotonicity induces TRPV4-mediated nociception in rat. Neuron. 2003;39:497–511.CrossRefPubMedGoogle Scholar
  27. 27.
    Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci. 2004;24:4444–52.CrossRefPubMedGoogle Scholar
  28. 28.
    Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem. 2004;279:35133–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol. 2007;578:715–33.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis NA, Jensen DD, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindstrom E, Guerrero-Alba R, Valdez-Morales EE, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem. 2014;289:27215–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Akiyama T, Ivanov M, Nagamine M, Davoodi A, Carstens MI, Ikoma A, Cevikbas F, Kempkes C, Buddenkotte J, Steinhoff M, Carstens E. Involvement of TRPV4 in serotonin-evoked scratching. J Invest Dermatol. 2016;136:154–60.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shibasaki K, Tominaga M, Ishizaki Y. Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochem Biophys Res Commun. 2015;458:168–73.CrossRefPubMedGoogle Scholar
  33. 33.
    Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, Ishizaki Y. TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch. 2015;467:2495–507.CrossRefPubMedGoogle Scholar
  34. 34.
    Shibasaki K, Ishizaki Y, Mandadi S. Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun. 2013;441:327–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem. 2014;289:14470–80.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K, Nakagawa T, Shibasaki K, Kaneko S. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia. 2012;60:761–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J. 2014;28:2238–48.CrossRefPubMedGoogle Scholar
  38. 38.
    Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, Obuse C, Togashi K, Tominaga M, Kita N, Tomiyama K, Iijima J, Nabeshima Y, Fujioka M, Asato R, Tanaka S, Kojima K, Ito J, Nozaki K, Hashimoto N, Ito T, Nishio T, Uchiyama T, Fujimori T. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007;316:1615–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, Takeda S. TRPV4 regulates the integrity of the blood–cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J. 2015;29:2247–59.CrossRefPubMedGoogle Scholar
  40. 40.
    Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest. 2007;117:3453–62.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem. 2009;284:21257–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. Pflugers Arch. 2005;451:193–203.CrossRefPubMedGoogle Scholar
  43. 43.
    Sidhaye VK, Guler AD, Schweitzer KS, D'Alessio F, Caterina MJ, King LS. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci USA. 2006;103:4747–52.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mizuno A, Matsumoto N, Imai M, Suzuki M. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol. 2003;285:C96–101.CrossRefPubMedGoogle Scholar
  45. 45.
    Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA. 2003;100:13698–703.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X. TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. 2014;28:4677–85.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nilius B, Owsianik G. Channelopathies converge on TRPV4. Nat Genet. 2010;42:98–100.CrossRefPubMedGoogle Scholar
  48. 48.
    Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH. Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet. 2008;40:999–1003.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2016

Authors and Affiliations

  1. 1.Department of Molecular and Cellular NeurobiologyGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations