Skip to main content

Sevoflurane in combination with propofol, not thiopental, induces a more robust neuroapoptosis than sevoflurane alone in the neonatal mouse brain

Abstract

Purpose

Sevoflurane is the most widely used volatile anesthetic of general anesthesia. In children and neonates, it is commonly used alone or in combination with thiopental or propofol. A few recent studies reported that sevoflurane induced neuronal death in the developing rodent brain. We measured the neurotoxicity of these anesthetics at clinical doses, alone and in combination, in the developing mouse brain.

Methods

Seven-day-old C57BL/6 mice were randomly assigned to 6 treatment groups. Three groups were exposed to 3 % sevoflurane for 6 h after injection of saline, thiopental (5 mg/kg), or propofol (10 mg/kg), whereas three groups were exposed to room air for 6 h after injection of equal doses of saline, thiopental, or propofol. Apoptosis in the hippocampal CA1 region (CA1) and retrosplenial cortex (RC) was assessed using caspase-3 immunostaining.

Results

Sevoflurane alone caused significantly higher apoptosis in the CA1 compared with saline plus air (P = 0.04). Sevoflurane in combination with propofol resulted in significantly greater numbers of apoptotic neurons than sevoflurane alone in both the CA1 and the RC (P = 0.04). However, there was no significant difference in apoptotic neuron density in both the regions between the groups treated with sevoflurane alone and in combination with thiopental (P = 0.683).

Conclusion

Sevoflurane alone can induce neuronal apoptosis, and this effect is enhanced by propofol. Thiopental did not exacerbate the neurotoxicity of sevoflurane. There is the possibility that the combination of sevoflurane and propofol is a more harmful anesthetic technique than sevoflurane alone in pediatric patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Stratmann G. Neurotoxicity of anesthetic drugs in the developing brain. Anesth Analg. 2011;113:1170–9.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Ikonomidou C, Bittigau P, Koch C, Genz F, Hoerster F, Felderhoff-Mueser U, Tenkova T, Dikranian K, Olney JW. Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol. 2001;62:401–5.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876–82.

    CAS  PubMed  Google Scholar 

  4. 4.

    Fredriksson A, Pontén E, Gordh T, Eriksson P. Neonatal exposure to a combination of N-methyl-d-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107:427–36.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res. 2004;153:367–76.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Fredriksson A, Archer T. Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. Neurotox Res. 2004;6:435–56.

    PubMed  Article  Google Scholar 

  7. 7.

    Lerman J, Sikich N, Kleinman S, Yentis S. The pharmacology of sevoflurane in infants and children. Anesthesiology. 1994;80:814–24.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Morray JP, Bhananker SM. Recent findings from the pediatric perioperative cardiac arrest (POCA) registry. ASA Newslett. 2005;69:10–2.

    Google Scholar 

  9. 9.

    Nishikawa K, Harrison NL. The actions of sevoflurane and desflurane on the gamma-aminobutyric acid receptor type A: effects of TM2 mutations in the alpha and beta subunits. Anesthesiology. 2003;99:678–84.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Hollmann MW, Liu HT, Hoenemann CW, Liu WH, Durieux ME. Modulation of NMDA receptor function by ketamine and magnesium, part II: interactions with volatile anesthetics. Anesth Analg. 2001;92:1182–91.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T. Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology. 2011;115:979–91.

    PubMed  Article  Google Scholar 

  12. 12.

    Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114:578–87.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 2009;110:628–37.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Katoh T, Ikeda K. Minimum alveolar concentration of sevoflurane in children. Br J Anaesth. 1992;68:139–41.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, Dissen GA, Creeley CE, Olney JW. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116:372–84.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Zhang X, Dissen GA, Creeley CE, Olney JW. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology. 2010;112:834–41.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. 17.

    Li Y, Liang G, Wang S, Meng Q, Wang Q, Wei H. Effects of fetal exposure to isoflurane on postnatal memory and learning in rats. Neuropharmacology. 2007;53:942–50.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Wozniak DF, Hartman RE, Boyle MP, Vogt SK, Brooks AR, Tenkova T, Young C, Olney JW, Muglia LJ. Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiol Dis. 2004;17:403–14.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. 2nd ed. San Diego: Academic Press; 2001.

    Google Scholar 

  20. 20.

    Shu Y, Patel SM, Pac-Soo C, Fidalgo AR, Wan Y, Maze M, Ma D. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010;113:360–8.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A, Sun P, Hossain M, Ma D, Maze M. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110:1077–85.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Liang G, Ward C, Peng J, Zhao Y, Huang B, Wei H. Isoflurane causes greater neurodegeneration than an equivalent exposure of sevoflurane in the developing brain of neonatal mice. Anesthesiology. 2010;112:1325–34.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Rugolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5:709–20.

    Article  Google Scholar 

  24. 24.

    Stratmann G, May LD, Sall JW, Alvi RS, Bell JS, Ormerod BK, Rau V, Hilton JF, Dai R, Lee MT, Visrodia KH, Ku B, Zusmer EJ, Guggenheim J, Firouzian A. Effect of hypercarbia and isoflurane on brain cell death and neurocognitive dysfunction in 7-day-old rats. Anesthesiology. 2009;110:849–61.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sanders RD, Ma D, Brooks P, Maze M. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity. Br J Anaesth. 2008;101:597–609.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Anand KJ, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1:243–8.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005;6:507–20.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Taddio A, Katz J, Ilersich AL, Koren G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet. 1997;349:599–603.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Hermann C, Hohmeister J, Demirakça S, Zohsel K, Flor H. Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain. 2006;125:278–85.

    PubMed  Article  Google Scholar 

  30. 30.

    Page GG, Blakely WP, Kim M. The impact of early repeated pain experiences on stress responsiveness and emotionality at maturity in rats. Brain Behav Immun. 2005;19:78–87.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Tagawa.

About this article

Cite this article

Tagawa, T., Sakuraba, S., Kimura, K. et al. Sevoflurane in combination with propofol, not thiopental, induces a more robust neuroapoptosis than sevoflurane alone in the neonatal mouse brain. J Anesth 28, 815–820 (2014). https://doi.org/10.1007/s00540-014-1822-x

Download citation

Keywords

  • Sevoflurane
  • Apoptosis
  • Children