Skip to main content

Advertisement

Log in

Interaction between rosuvastatin and rocuronium in rat sciatic-gastrocnemius nerve-muscle preparation

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Long-term use of rosuvastatin may be associated with myotoxicity. Statins are one of the groups commonly found to be associated with neuromuscular weakness. The present study was designed to investigate the interaction between rosuvastatin and rocuronium in vivo by using a sciatic-gastrocnemius nerve-muscle preparation of rat.

Methods

In our study groups, animals received rosuvastatin 2 mg/kg for 14 and 28 days. Train of four (TOF) stimulation was applied to the sciatic nerve, and gastrocnemius muscle contractions were recorded in Wistar albino rats. Intravenous infusion of rocuronium was given until the twitch responses were abolished. We ultimately compared the effective dose required for a desired effect in 95% of the population (ED95), duration 25 %, deep block, recovery index, and time for returning of TOF ratio to 0.9 between the active control and study groups.

Results

Chronic administration of rosuvastatin at a dose of 2 mg/kg for 28 days significantly reduced the ED95 of rocuronium as compared to the active control group. Deep block and duration 25 % were increased by 3.5 and 2.5 times, respectively, compared to the active control group. The spontaneous recovery of neuromuscular block was delayed, as evidenced by the prolonged recovery index and increase in time required for a return of the TOF ratio to 0.9.

Conclusion

The neuromuscular blocking potency of rocuronium is increased and recovery is delayed in rats that pre-treated with rosuvastatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Bernard R, Chaitman BR, Leslie S, Stern T, Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering (MIRACL) Study Investigators. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285:1711–8.

    Article  PubMed  CAS  Google Scholar 

  2. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, Cain VA, Blasetto JW, STELLAR Study Group. Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol. 2003;92(2):152–60.

    Article  PubMed  CAS  Google Scholar 

  3. Borroni V, Barrantes FJ. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem. 2011;286(19):17122–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Hamilton-Craig I. Statin-associated myopathy. Med J Aust. 2001;175(9):486–9.

    PubMed  CAS  Google Scholar 

  5. Bliznakov EG, Wilkins DJ. Biochemical and clinical consequences of inhibiting coenzyme Q biosynthesis by lipid-lowering HMG-Co A reductase inhibitors (statins): a critical overview. Adv Ther. 1998;15:218–28.

    CAS  Google Scholar 

  6. Sonoda Y, Gotow T, Kuriyama M, Nakahara K, Arimura K, Osame M. Electrical myotonia of rabbit skeletal muscles by HMG-CoA reductase inhibitors. Muscle Nerve. 1994;17:891–4.

    Article  PubMed  CAS  Google Scholar 

  7. Hochgraf E, Levy Y, Aviram M, Brook JG, Cogan U. Lovastatin decreases plasma and platelet cholesterol levels and normalizes elevated platelet fluidity and aggregation in hypercholesterolaemic patients. Metabolism. 1994;43:59–64.

    Article  Google Scholar 

  8. Westwood FR, Bigley A, Randall K, Marsden AM, Scott RC. Statin-induced muscle necrosis in the rat: distribution, development, and fibre selectivity. Toxicol Pathol. 2005;33(2):246–57.

    Article  PubMed  CAS  Google Scholar 

  9. Bannwarth B. Drug-induced myopathies. Expert Opin Drug Saf. 2002;1:65–70.

    Article  PubMed  CAS  Google Scholar 

  10. Dalakas MC. Peripheral neuropathy and antiretroviral drugs. J Peripher Nerv Syst. 2001;6:14–20.

    Article  PubMed  CAS  Google Scholar 

  11. Klopstock T. Drug incued myopathies. Curr Opin Neurol. 2008;21(5):590–5.

    Article  PubMed  Google Scholar 

  12. Savarese JJ, Caldwell JE, Lien CA, Miller RD. Pharmacology of muscle relaxants and their antagonist. In: Miller Ronald D, editor. Miller’s Anesthesia. Philadelphia: Elsevier Churchill Livingstone; 2000. p. 412–90.

    Google Scholar 

  13. Maramattom BV, Wijdicks EF. Acute neuromuscular weakness in the intensive care unit. Crit Care Med. 2006;34:2835–41.

    Article  PubMed  Google Scholar 

  14. Mishra Y, Ramzan I. Interaction between succinylcholine and ranitidine in rats. Can J Anesth. 1993;40:32–7.

    Article  PubMed  CAS  Google Scholar 

  15. Fu C, Mishra Y, Ramzan I. Omeprazole potentiates atracurium and succinylcholine paralysis in vivo in rats. Anesth Analg. 1994;78(3):527–30.

    Article  PubMed  CAS  Google Scholar 

  16. Conor D, Jennifer M. Monitoring of neuromuscular block. Contin Educ Anaesth Crit Care Pain. 2006;6(1):7–12.

    Article  Google Scholar 

  17. Viby-Mogensen Jorgen. Neuromuscular monitoring. In: Miller Ronald D, editor. Miller’s Anesthesia. Philadelphia: Elsevier Churchill Livingstone; 2000. p. 1351–66.

    Google Scholar 

  18. Saitoh Y, Toyooka H, Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaesthetics and neuroleptanaesthesia. Br J Anaesth. 1993;70:402–4.

    Article  PubMed  CAS  Google Scholar 

  19. Ghosh MN. Toxicity studies. In: Ghosh SK, editor. Fundamentals of experimental pharmacology. Kolkata: Hilton & company; 2011. p. 165–72.

    Google Scholar 

  20. Bersot TP. Drug therapy for Hypercholesterolemia and Dyslipidemia. In: Laurence LB, Parker KL, editors. Goodman and Gilman’s The Pharmacological Basics of Therapeutics. New York: The McGraw-Hill Companies, Inc; 2011. p. 877–908.

    Google Scholar 

  21. Sidaway J, Wang Y, Marsden AM, Orton TC, Westwood FR, Azuma CT, Scott RC. Statin-induced myopathy in the rat: relationship between systemic exposure, muscle exposure and myopathy. Xenobiotica. 2009;39(1):90–8.

    Article  PubMed  CAS  Google Scholar 

  22. McTaggart F, Buckett L, Davidson R, Holdgate G, McCormick A, Schneck D, Smith G, Warwick M. Preclinical and clinical pharmacology of rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Am J Cardiol. 2001;87(Suppl):28B–32B.

    Article  PubMed  CAS  Google Scholar 

  23. Magorian T, Wood P, Caldwell J, Fisher D, Segredo V, Szenohradszky J, Sharma M, Gruenke L, Miller R. The pharmacokinetics and neuromuscular effects of rocuronium bromide in patients with liver disease. Anesth Analg. 1995;80(4):754–9.

    PubMed  CAS  Google Scholar 

  24. Pierno S, Didonna MP, Cippone V, De Luca A, Pisoni M, Frigeri A, Nicchia GP, Svelto M, Chiesa G, Sirtori C, Scanziani E, Rizzo C, De Vito D, Conte Camerino D. Effects of chronic treatment with statins and fenofibrate on rat skeletal muscle: a biochemical, histological and electrophysiological study. Br J Pharmacol. 2006;149(7):909–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Brannigan G, Hénin J, Law R, Eckenhoff R, Klein ML. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Nat. Acad. Sci. USA. 2008;105:14418–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Grajales-Reyes GE, Báez-Pagán CA, Zhu H, Grajales-Reyes JG, Delgado-Vélez M, García Beltrán WF, Luciano CA, Quesada O, Ramírez R, Gómez CM, Lasalde-Dominicci JA. Transgenic mouse model reveals an unsuspected role of the acetylcholine receptor in statin induced neuromuscular adverse drug reactions. Pharmacogenomics J. 2013;13(4):362–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ. Cholesterol depletion activates rapid internalization of submicronsized acetylcholine receptor domains at the cell membrane. Mol Membr Biol. 2007;24(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  28. Zamir O, Charlton MP. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol. 2006;571(Pt 1):83–99.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Turan A, Mendoza ML, Gupta S, You J, Gottlieb A, Chu W, Saager L, Sessler DI. Consequences of Succinylcholine Administration to Patients Using Statins. Anesthesiology. 2011;115(1):28–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tejas K. Patel, Assistant Professor, Pharmacology, GMERS Medical College, Gotri, Vadodara, Gujarat, India, and Dr. Premila S. Jha, Associate Professor, Anesthesiology, Govt. Medical College, Bhavnagar, Gujarat, India, for critically scrutinizing the manuscript.

This work was supported by the Indian Council of Medical Research (ICMR), New Delhi, vide letter no. 3/2/2012/PG- thesis-HRD: dated—04/04/2012.

Conflicts of interest

The authors declare that they have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Tripathi.

About this article

Cite this article

Panchasara, A.K., Patel, J.C., Vadgama, V.K. et al. Interaction between rosuvastatin and rocuronium in rat sciatic-gastrocnemius nerve-muscle preparation. J Anesth 28, 727–732 (2014). https://doi.org/10.1007/s00540-014-1792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-014-1792-z

Keywords

Navigation