Skip to main content

Advertisement

Log in

Effect of thrombomodulin on the development of monocrotaline-induced pulmonary hypertension

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to investigate whether thrombomodulin (TM) prevents the development of pulmonary hypertension (PH) in monocrotaline (MCT)-injected rats.

Methods

Human recombinant TM (3 mg/kg/2 days) or saline were given to MCT-injected male Sprague–Dawley rats for 19 (n = 14) or 29 (n = 11) days. Control rats (n = 6) were run for 19 days. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy (RVH), percentages of muscularized peripheral arteries (%muscularization), and medial wall thickness of small muscular arteries (%MWT) were measured. To determine inflammatory and coagulation responses, broncho-alveolar lavage fluid (BALF) was analyzed in another set of rats (n = 29). Western blotting for endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) in the lung tissue was performed in separate rats (n = 13). Survival was determined in 60 rats.

Results

MCT increased mPAP, RVH, %muscularization, and %MWT. TM treatment significantly reduced mPAP, %muscularization, and %MWT in peripheral arteries with an external diameter of 50–100 μm in 19 days after MCT injection, but the effect was lost after 29 days. MCT increased the levels of tumor necrosis factor alpha, monocyte chemoattractant protein-1, and thrombin-antithrombin complex in BALF. Expression of eNOS increased in MCT rats, while peNOS decreased. The relative amount of peNOS to total eNOS increased in MCT/TM rats compared to MCT/Vehicle rats. A Kaplan–Meier survival curve showed no difference with and without TM.

Conclusion

Although the administration of TM might slightly delay the progression of MCT-induced PH, the physiological significance for treatment is limited, since the survival rate was not improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest. 2008;118:2372–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Mitani Y, Maruyama K, Sakurai M. Prolonged administration of l-arginine ameliorates chronic pulmonary hypertension and pulmonary vascular remodeling in rats. Circulation. 1997;96:689–769.

    Article  CAS  PubMed  Google Scholar 

  3. Maruyama J, Maruyama K, Mitani Y, Kitabatake M, Yamauchi T, Miyasaka K. Continuous low-dose NO inhalation does not prevent monocrotaline-induced pulmonary hypertension in rats. Am J Physiol. 1997;272:H517–24.

    CAS  PubMed  Google Scholar 

  4. Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K. Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J. 2010;74:1696–703.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang BH, Maruyama J, Yokochi A, Iwasaki M, Amano H, Mitani Y, Maruyama K. Prolonged nitric oxide inhalation fails to regress hypoxic vascular remodeling in rat lung. Chest. 2004;125:2247–52.

    Article  CAS  PubMed  Google Scholar 

  6. Dorfmuller P, Perros F, Balabanian K, Humbert M. Inflammation in pulmonary arterial hypertension. Eur Respir J. 2003;22:358–63.

    Article  CAS  PubMed  Google Scholar 

  7. Maruyama K, Maruyama J, Utsunomiya H, Furuhashi K, Kurobuchi M, Katayama Y, Yada I, Muneyuki M. Effect of nicardipine on pulmonary hypertension after repair of congenital heart defects in early postoperative period. J Anesth. 1993;7:95–101.

    Article  CAS  PubMed  Google Scholar 

  8. Maruyama K, Nakai Y, Chikusa H, Muneyuki M. Verapamil reduced pulmonary hypertension in adult respiratory distress syndrome. J Anesth. 1994;8:480–1.

    Article  Google Scholar 

  9. Fujita M, Shannon JM, Irvin CG, Fagan KA, Cool C, Augustin A, Mason RJ. Overexpression of tumor necrosis factor-α produces an increase in lung volume and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2001;280:L39–49.

    CAS  PubMed  Google Scholar 

  10. Miyata M, Ito M, Sasajima T, Ohira H, Kasukawa R. Effect of a serotonin receptor antagonist on interleukin-6-induced pulmonary hypertension in rats. Chest. 2001;119:554–61.

    Article  CAS  PubMed  Google Scholar 

  11. Stenmark KR, Morganroth ML, Remigio LK, Voelkel NF, Murphy RC, Henson PM, Mathias MM, Reeves JT. Alveolar inflammation and arachidonate metabolism in monocrotaline-induced pulmonary hypertension. Am J Physiol. 1985;248:H856–66.

    Google Scholar 

  12. Zapol WM, Jones R. Vascular components of ARDS. Clinical pulmonary hemodynamics and morphology. Am Rev Respir Dis. 1987;136:471–4.

    Article  CAS  PubMed  Google Scholar 

  13. Snow RL, Davies P, Pontoppidan H, Zapol WM, Reid L. Pulmonary vascular remodeling in adult respiratory distress syndrome. Am Rev Respir Dis. 1982;126:887–92.

    CAS  PubMed  Google Scholar 

  14. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.

    Article  PubMed  Google Scholar 

  15. Saito H, Maruyama S, Shimazaki S, Yamamoto Y, Aikawa N, Ohno R, Hirayama A, Matsuda T, Asakura H, Nakashima M, Aoki N. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in deisseminated intravascular coagulation: results of a phase III, randomized, double-blinded clinical trial. J Thromb Haemost. 2007;5:31–41.

    Article  CAS  PubMed  Google Scholar 

  16. Iba T, Nagaoka I, Boulat M. The anticoagulant therapy for sepsis-associated disseminated intravascular coagulation. Thromb Res. 2013 in press.

  17. Weiler H, Isermann BH. Thrombomodulin. J Thromb Haemost. 2003;1:1515–24.

    Article  CAS  PubMed  Google Scholar 

  18. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med. 2004;32:S254–61.

    Article  PubMed  Google Scholar 

  19. Grinnell BW, Berg DT. Surface thrombomodulin modulates thrombin receptor responses on vascular smooth muscle cell. Am J Physiol. 1996;270:H603–9.

    CAS  PubMed  Google Scholar 

  20. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005;111:1627–36.

    Article  CAS  PubMed  Google Scholar 

  21. David-Dufilho M, Brussel EMV, Topal G, Walch L, Brunet A, Rendu F. Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. J Biol Chem. 2005;280:35999–6006.

    Article  CAS  PubMed  Google Scholar 

  22. Ikeguchi H, Maruyama S, Morita Y, Fujita Y, Kato T, Natori Y, Akastu H, Campbell W, Okada N, Okada H, Yuzawa Y, Mastuo S. Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kid Int. 2002;61:490–501.

    Article  CAS  Google Scholar 

  23. Nagato M, Okamoto K, Abe Y, Higure A, Yamaguchi K. Recombinant human soluble thrombomodulin decreases the plasma high-mobility group box-a protein levels, whereas improving the acute liver injury and survival rates in experimental endotoxemia. Crit Care Med. 2009;37:2181–6.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts JD Jr, Roberts CT, Jones RC, Zapol WM, Bloch KD. Continuous nitric oxide inhalation reduces pulmonary arterial structural changes, right ventricular hypertrophy, and growth retardation in the hypoxic newborn rat. Circ Res. 1995;76:215–22.

    Article  CAS  PubMed  Google Scholar 

  25. Kimura H, Kasahara Y, Kurosu K, Sugito K, Takiguchi Y, Terai M, Mikata A, Natsume M, Mukaida N, Matsushima K, Kuriyama T. Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest. 1998;78:571–81.

    CAS  PubMed  Google Scholar 

  26. Chang LT, Sun CK, Sheu JJ, Chiang CH, Youssef AA, Lee FY, Wu CJ, Yip HK. Cilostazol therapy attenuates monocrotaline-induced pulmonary arterial hypertension in rat model. Circ J. 2008;72:825–31.

    Article  CAS  PubMed  Google Scholar 

  27. Sawada H, Mitani Y, Maruyama J, Jiang BH, Ikeyama Y, Dida FA, Yamamoto H, Imanaka-Yoshida K, Shimpo H, Mizoguchi A, Maruyama K, Komada Y. A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats. Chest. 2007;132:1265–74.

    Article  CAS  PubMed  Google Scholar 

  28. Wang FM, Wang DW, Yang SW. Changes of thrombomodulin in rats with pulmonary hypertension induced by monocrotaline. Zhonghua Er Ke Za Zhi. 2007;45:297–8.

    PubMed  Google Scholar 

  29. Moll S, Lindley C, Pescatore S, Morrison D, Tsuruta K, Mohri M, Serada M, Sata M, Shimizu H, Yamada K, White GC II. Phase I study of a novel recombinant human soluble thrombomodulin, ART-123. J Thromb Haemost. 2004;2:1745–51.

    Article  CAS  PubMed  Google Scholar 

  30. Cacoub P, Karmochkine M, Dorent R, Nataf P, Piette JC, Godeau P, Gandjbakhch IG, Boffa MC. Plasma levels of thrombomodulin in pulmonary hypertension. Am J Med. 1996;101:160–4.

    Article  CAS  PubMed  Google Scholar 

  31. Sakamaki F, Kyotani S, Nagaya N, Sato N, Oya H, Satoh T, Nakanishi N. Increased plasma p-selectin and decreased thrombomodulin in pulmonary arterial hypertension were improved by continuous prostacyclin therapy. Circulation. 2000;102:2720–5.

    Article  CAS  PubMed  Google Scholar 

  32. Ventetuolo CE, Klinger JR. WHO Group 1 pulmonary arterial hypertension: current and investigative therapies. Prog Cardiovasc Dis. 2012;55:89–103.

    Article  PubMed  Google Scholar 

  33. Strieter RM, Kunkel SL. The immunopathology of chemotactic cytokines. Adv Exp Med Biol. 1993;351:19–28.

    Article  CAS  PubMed  Google Scholar 

  34. Ikeda Y, Yonemitsu Y, Kataoka C, Kitamoto S, Yamaoka T, Nishida K, Takeshita A, Egashira K, Sueishi K. Anti-monocyte chemoattractant protein-1 gene therapy attenuates pulmonary hypertension in rats. Am J Physiol Heart Circ Physiol. 2002;283:H2021–8.

    CAS  PubMed  Google Scholar 

  35. Jin H, Yang X, Liu K, Gu Q, Xu X. Effects of a novel peptide derived from human thrombomodulin on endotoxin-induced uveitis in vitro and in vivo. FEBS Lett. 2011;585:3457–64.

    Article  CAS  PubMed  Google Scholar 

  36. Nishii Y, Gabazza EC, Fujimoto H, Nakahara H, Takagi T, Bruno N, D’Alessandro-Gabazza CN, Maruyama J, Maruyama K, Hayashi T, Adachi Y, Suzuki K, Taguchi O. Protective role of protein C inhibitor in monocrotaline-induced pulmonary hypertension. J Thromb Haemost. 2006;4:2331–9.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987;6:1891–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-In-Aid for Scientific Research 16390449, 20590920, and 21592003 from the Japanese Ministry of Education, Science and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junko Maruyama.

About this article

Cite this article

Yamada, Y., Maruyama, J., Zhang, E. et al. Effect of thrombomodulin on the development of monocrotaline-induced pulmonary hypertension. J Anesth 28, 26–33 (2014). https://doi.org/10.1007/s00540-013-1663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-013-1663-z

Keywords

Navigation