Skip to main content
Log in

The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Bupivacaine, levobupivacaine, and ropivacaine are amide local anesthetics. Levobupivacaine and ropivacaine are stereoisomers of bupivacaine and were developed to circumvent the bupivacaine’s severe toxicity. The recently characterized background potassium channel, K2P TREK-1, is a well-known target for various local anesthetics. The purpose of study is to investigate the differences in inhibitory potency and stereoselectivity among bupivacaine, levobupivacaine, and ropivacaine on K2P TREK-1 channels overexpressed in COS-7 cells.

Methods

We investigated the effects of bupivacaine, levobupivacaine, and ropivacaine (10, 50, 100, 200, and 400 μM) on TREK-1 channels expressed in COS-7 cells by using the whole cell patch clamp technique with a voltage ramp protocol ranging from −100 to 100 mV for 200 ms from a holding potential of −70 mV.

Results

Bupivacaine, levobupivacaine, and ropivacaine showed reversible inhibition of TREK-1 channels in a concentration-dependent manner. The half-maximal inhibitory concentrations (IC50) of bupivacaine, levobupivacaine, and ropivacaine were 95.4 ± 14.6, 126.1 ± 24.5, and 402.7 ± 31.8 μM, respectively. IC50 values indicated a rank order of potency (bupivacaine > levobupivacaine > ropivacaine) with stereoselectivity. Hill coefficients were 0.84, 0.93, and 0.89 for bupivacaine, levobupivacaine, and ropivacaine, respectively.

Conclusion

Inhibitory effects on TREK-1 channels by bupivacaine, levobupivacaine, and ropivacaine demonstrated stereoselectivity: bupivacaine was more potent than levobupivacaine and ropivacaine. Inhibition of TREK-1 channels and consecutive depolarization of the cell membrane by bupivacaine, levobupivacaine, and ropivacaine may contribute to the blockade of neuronal conduction and side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zink W, Graf BM. The toxicity of local anesthetics: the place of ropivacaine and levobupivacaine. Curr Opin Anaesthesiol. 2008;21:645–50.

    Article  PubMed  Google Scholar 

  2. Groban L. Central nervous system and cardiac effects from long-acting amide local anesthetic toxicity in the intact animal model. Reg Anesth Pain Med. 2003;28:3–11.

    CAS  PubMed  Google Scholar 

  3. Stewart J, Kellett N, Castro D. The central nervous system and cardiovascular effects of levobupivacaine and ropivacaine in health volunteers. Anesth Analg. 2003;97:412–6.

    Article  CAS  PubMed  Google Scholar 

  4. Zink W, Graf BM. Benefit-risk assessment of ropivacaine in the management of postoperative pain. Drug Saf. 2004;27:1093–114.

    Article  CAS  PubMed  Google Scholar 

  5. Mather LE. Stereochemistry in anaesthetic and analgesic drugs. Minerva Anestesiol. 2005;71:507–16.

    CAS  PubMed  Google Scholar 

  6. Casati A, Putzu M. Bupivacaine, levobupivacaine and ropivacaine: are they clinically different? Best Pract Res Clin Anaesthesiol. 2005;19:247–68.

    Article  CAS  PubMed  Google Scholar 

  7. Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994;265:1724–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kindler CH, Spencer Y, Gray AT. Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology. 1999;90:1092–102.

    Article  CAS  PubMed  Google Scholar 

  9. Kindler CH, Paul M, Zou H, Liu C, Winegar BD, Gray AT, Yost CS. Amide local anesthetics potently inhibit the human tandem pore domain background K+ channel TASK-2 (KCNK5). J Pharmacol Exp Ther. 2003;306:84–92.

    Article  CAS  PubMed  Google Scholar 

  10. Lesage F, Lazdunski M. Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol. 2000;279:F793–801.

    CAS  PubMed  Google Scholar 

  11. Kindler CH, Yost CS. Two-pore domain potassium channels: new sites of local anesthetic action and toxicity. Reg Anesth Pain Med. 2005;30:260–74.

    Article  CAS  PubMed  Google Scholar 

  12. Honoré E. The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci. 2007;8:251–61.

    Article  PubMed  Google Scholar 

  13. Nayak TK, Harinath S, Nama S, Somasundaram K, Sikdar SK. Inhibition of human two-pore domain K+ channel TREK1 by local anesthetic lidocaine: negative cooperativity and half-of-sites saturation kinetics. Mol Pharmacol. 2009;76:903–17.

    Article  CAS  PubMed  Google Scholar 

  14. Kim E, Hwang EM, Yarishkin O, Yoo JC, Kim D, Park N, Cho M, Lee YS, Sun CH, Yi GS, Yoo J, Kang D, Han J, Hong SG, Park JY. Enhancement of TREK1 channel surface expression by protein–protein interaction with beta-COP. Biochem Biophys Res Commun. 2010;30:244–50.

    Article  Google Scholar 

  15. Leone S, Di Cianni S, Casati A, Fanelli G. Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine. Acta Biomed. 2008;79:92–105.

    CAS  PubMed  Google Scholar 

  16. Longobardo M, Delpón E, Caballero R, Tamargo J, Valenzuela C. Structural determinants of potency and stereoselective block of hKv1.5 channels induced by local anesthetics. Mol Pharmacol. 1998;54:162–9.

    CAS  PubMed  Google Scholar 

  17. González T, Arias C, Caballero R, Moreno I, Delpón E, Tamargo J, Valenzuela C. Effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels: stereoselective bupivacaine block. Br J Pharmacol. 2002;137:1269–79.

    Article  PubMed  Google Scholar 

  18. Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-p-domain subunits. Nat Rev Neurosci. 2001;2:175–84.

    Article  CAS  PubMed  Google Scholar 

  19. Judge SI, Smith PJ, Stewart PE, Bever CT Jr. Potassium channel blockers and openers as CNS neurologic therapeutic agents. Recent Pat CNS Drug Discov. 2007;2:200–28.

    Article  CAS  PubMed  Google Scholar 

  20. Patel AJ, Honoré E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology. 2001;95:1013–21.

    Article  CAS  PubMed  Google Scholar 

  21. Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci. 1999;2:422–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacology. 2003;44:1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605.

    Article  CAS  PubMed  Google Scholar 

  24. Yost CS. Tandem pore domain K channels: an important site of volatile anesthetic action? Curr Drug Targets. 2000;1:207–17.

    Article  CAS  PubMed  Google Scholar 

  25. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J. 2004;23:2684–95.

    Article  CAS  PubMed  Google Scholar 

  26. Sirois JE, Lei Q, Talley EM, Lynch C 3rd, Bayliss DA. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci. 2000;20:6347–54.

    CAS  PubMed  Google Scholar 

  27. Punke MA, Licher T, Pongs O, Friederich P. Inhibition of human TREK-1 channels by bupivacaine. Anesth Analg. 2003;96:1665–73.

    Article  CAS  PubMed  Google Scholar 

  28. Patel AJ, Honoré E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 1998;17:4283–90.

    Article  CAS  PubMed  Google Scholar 

  29. Du G, Chen X, Todorovic MS, Shu S, Kapur J, Bayliss DA. TASK channel deletion reduces sensitivity to local anesthetic-induced seizures. Anesthesiology. 2011;115:1003–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Buyse I, Stockman W, Columb M, Vandermeersch E, Van de Velde M. Effect of sufentanil on minimum analgesic concentrations of epidural bupivacaine, ropivacaine and levobupivacaine in nullipara in early labour. Int J Obstet Anesth. 2007;16:22–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the World Class Institute (WCI 2009-003) and MRC (2012-0000305) Programs of the NRF funded by the MEST of Korea.

Conflict of interest

All authors declare no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hye Won Shin or C. Justin Lee.

About this article

Cite this article

Shin, H.W., Soh, J.S., Kim, H.Z. et al. The inhibitory effects of bupivacaine, levobupivacaine, and ropivacaine on K2P (two-pore domain potassium) channel TREK-1. J Anesth 28, 81–86 (2014). https://doi.org/10.1007/s00540-013-1661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-013-1661-1

Keywords

Navigation