Journal of Anesthesia

, Volume 27, Issue 1, pp 72–79 | Cite as

Epinephrine decreases the dose of hyperbaric bupivacaine necessary for tourniquet pain blockade during spinal anesthesia for total knee replacement arthroplasty

  • Won Ho Kim
  • Justin Sangwook Ko
  • Hyun Joo AhnEmail author
  • Soo Joo Choi
  • Byung Seop Shin
  • Mi Sook Gwak
  • Woo Seog Sim
  • Mikyung Yang
Original Article



We quantified the dose-sparing effect of epinephrine by comparing the median effective dose (ED50) of intrathecal hyperbaric bupivacaine co-administered with epinephrine with the ED50 of intrathecal hyperbaric bupivacaine alone.


Three groups were randomly generated from 162 patients undergoing total knee replacement arthroplasty under combined spinal and epidural anesthesia: Group B (bupivacaine), Group BE1 (bupivacaine plus epinephrine 100 μg), and Group BE2 (bupivacaine plus epinephrine 200 μg). Each group was further divided by bupivacaine doses of 6, 7, 8, 9, 10, or 11 mg. The anesthesia was defined as successful if a bilateral T12 sensory block occurred within 15 min, and no intraoperative epidural supplement was required. The ED50 and ED95 for successful anesthesia and successful tourniquet pain blockade were determined separately by probit regression analysis.


The ED50 and ED95 of intrathecal hyperbaric bupivacaine for successful anesthesia were not different among the groups: the ED50 values were 7.1 mg [95 % confidence interval (95 % CI) 6.0–8.0 mg] in Group B, 6.2 mg (95 % CI 4.8–7.2 mg) in Group BE1, and 6.3 mg (95 % CI 4.9–7.2 mg) in Group BE2. However, the ED50 and ED95 values for tourniquet pain control were significantly smaller in Groups BE1 and BE2 than in Group B: the ED50 values were 7.2 mg (95 % CI 6.3–7.9 mg), 5.5 mg (95 % CI 4.1–6.3 mg), and 5.3 mg (95 % CI 3.7–6.2 mg) in Groups B, BE1, and BE2, respectively. The incidence of tourniquet pain was significantly lower in Groups BE1 and BE2 than in Group B. The time to patients’ requests for supplemental analgesia was significantly longer in Groups BE1 and BE2 than in Group B.


Intrathecal epinephrine did not decrease the dose of intrathecal hyperbaric bupivacaine required for successful anesthesia. However, it reduced the dose required for tourniquet pain blockade.


Intrathecal epinephrine Hyperbaric bupivacaine Spinal anesthesia Dose-sparing effect ED50 


  1. 1.
    Collins JG, Kitahata LM, Homma E, Suzukawa M. Spinal cord effects of epinephrine. Anesth Analg. 1981;60:913–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Porter SS, Albin MS, Watson WA, Bunegin L, Pantoja G. Spinal cord and cerebral blood flow responses to subarachnoid injection of local anesthetics with and without epinephrine. Acta Anaesthesiol Scand. 1985;29:330–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Kozody R, Palahniuk RJ, Wade JG, Cumming MO, Pucci WR. The effect of subarachnoid epinephrine and phenylephrine on spinal cord blood flow. Can Anaesth Soc J. 1984;31:503–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Denson DD, Turner PA, Bridenbaugh PO, Thompson GA. Pharmacokinetics and neural blockade after subarachnoid lidocaine in the Rhesus monkey. III. Effects of epinephrine. Anesth Analg. 1984;63:129–33.PubMedGoogle Scholar
  5. 5.
    Denson DD, Bridenbaugh PO, Turner PA, Phero JC, Raj PP. Neural blockade and pharmacokinetics following subarachnoid lidocaine in the Rhesus monkey. I. Effects of epinephrine. Anesth Analg. 1982;61:746–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Axelsson K, Widman B. Blood concentration of lidocaine after spinal anesthesia using lidocaine and lidocaine with epinephrine. Acta Anesthesiol Scand. 1981;25:240–5.CrossRefGoogle Scholar
  7. 7.
    Converse JG, Landmesser CM, Harmel MH. The concentration of pontocaine HCl in the CSF during spinal anesthesia and the influence of epinephrine in prolonging the sensory effect. Anesthesiology. 1954;15:1–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Collins JG, Kitahata LM, Matsumoto ME, Homma E, Suzukawa M. Spinally administered epinephrine suppresses noxiously evoked activity of WDR neurons in the dorsal horn of the spinal cord. Anesthesiology. 1984;60:269–75.PubMedCrossRefGoogle Scholar
  9. 9.
    Reddy SVR, Maderdrut JL, Yaksh TL. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther. 1980;213:525–33.PubMedGoogle Scholar
  10. 10.
    Gurbet A, Turker G, Kose DO, Uckunkaya N. Intrathecal epinephrine in combined spinal-epidural analgesia for labor: dose–response relationship for epinephrine added to a local anesthetic-opioid combination. Int J Obstet Anesth. 2005;14:121–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Okutomi T, Mochizuki J, Amano K, Datta S. The effect of intrathecal epinephrine on epidural infused analgesics during labor. Reg Anesth Pain Med. 2003;28:108–12.PubMedGoogle Scholar
  12. 12.
    Vercauteren MP, Jacobs S, Jacquemyn Y, Adriaensen HA. Intrathecal labor analgesia with bupivacaine and sufentanil: the effect of adding 2.25 μg epinephrine. Reg Anesth Pain Med. 2001;26:473–7.PubMedGoogle Scholar
  13. 13.
    Turker G, Uckunkaya N, Yilmazlar A, Demirag B, Tokat O. Effects of adding epinephrine plus fentanyl to low-dose lidocaine for spinal anesthesia in outpatient knee arthroscopy. Acta Anaesthesiol Scand. 2003;47:986–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Moore DC, Chadwick HS, Ready LB. Epinephrine prolongs lidocaine spinal anesthesia: pain in the operative site the most accurate method of determining local anesthetic duration. Anesthesiology. 1987;67:416–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Leight CH, Carlson SA. Prolongation of lidocaine spinal anesthesia with epinephrine and phenylephrine. Anesth Analg. 1986;65:365–9.CrossRefGoogle Scholar
  16. 16.
    Chambers WA, Littlewood DG, Logan MR, Scott DB. Effect of added epinephrine on spinal anesthesia with lidocaine. Anesth Analg. 1981;60:417–20.PubMedCrossRefGoogle Scholar
  17. 17.
    Malinow AM, Mokriski BL, Nomura MK, Kaufman MA, Snell JA, Sharp GD, Howard RA. Effect of epinephrine on intrathecal fentanyl analgesia in patients undergoing postpartum tubal ligation. Anesthesiology. 1990;73:381–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Abouleish EI. Epinephrine improves the quality of spinal hyperbaric bupivacaine for cesarean section. Anesth Analg. 1987;66:395–400.PubMedGoogle Scholar
  19. 19.
    Goodman SR, Kim-Lo SH, Ciliberto CF, Ridley DM, Smiley RM. Epinephrine is not a useful addition to intrathecal fentanyl or fentanyl-bupivacaine for labor analgesia. Reg Anesth Pain Med. 2002;27:374–9.PubMedGoogle Scholar
  20. 20.
    Vaghadia H, Solylo M, Henderson C, Mitchell GW. Selective spinal anesthesia for outpatient laparoscopy. II. Epinephrine and spinal cord function. Can J Anesth. 2001;48:261–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Spivey DL. Epinephrine does not prolong lidocaine spinal anesthesia in term parturient. Anesth Analg. 1985;64:468–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Camann WR, Minzter BH, Denney RA, Datta S. Intrathecal sufentanil for labor analgesia. Anesthesiology. 1993;78:870–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Carvalho B, Durbin M, Drover DR, Cohen SE, Ginosar Y, Riley ET. The ED50 and ED95 of intrathecal isobaric bupivacaine with opioids for cesarean delivery. Anesthesiology. 2005;103:606–12.PubMedCrossRefGoogle Scholar
  24. 24.
    Capogna G, Celleno D, Laudano D, Giunta F. Alkalinization of local anesthetics. Which block, which local anesthetics? Reg Anesth. 1995;20:369–77.PubMedGoogle Scholar
  25. 25.
    Bromage PR, Burfoot MF, Crowell DE, Pettigrew RT. Quality of epidural blockade: I. Influence of physical factors. Br J Anaesth. 1964;36:342–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Nam JM. A simple approximation for calculating sample sizes for detecting linear trend in proportions. Biometrics. 1987;43:701–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Wheeler MW, Park RM, Bailer AJ. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem. 2006;25:1441–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Nukina I, LaBella FS. Agonist-induced regulation of adrenoceptor subtypes in cerebral cortical slices. J Neurochem. 1987;49:389–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Concepcion MA, Lambert DH, Welch KA, Covino BG. Tourniquet pain during spinal anesthesia: a comparison of plain solutions of tetracaine and bupivacaine. Anesth Analg. 1988;67:828–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Bonnet F, Diallo A, Saada M, Belon M, Guilbaud M, Boico O. Prevention of tourniquet pain by spinal isobaric bupivacaine with clonidine. Br J Anaesth. 1989;63:93–6.PubMedCrossRefGoogle Scholar
  31. 31.
    MacIver MB, Tanelian DL. Activation of C fibers by metabolic perturbations associated with tourniquet ischemia. Anesthesiology. 1992;76:617–23.PubMedCrossRefGoogle Scholar
  32. 32.
    Crews JC, Cahall M, Behbehani MM. The neurophysiologic mechanisms of tourniquet pain. The activity of neurons in the retroventral medulla in the rat. Anesthesiology. 1994;81:730–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Fink BR. Mechanism of differential axial blockade in epidural and subarachnoid anesthesia. Anesthesiology. 1989;70:851–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Gissen AJ, Covino BG, Gregus J. Differential sensitivities of mammalian nerve fibers to local anesthetic agents. Anesthesiology. 1980;53:467–74.PubMedCrossRefGoogle Scholar

Copyright information

© Japanese Society of Anesthesiologists 2012

Authors and Affiliations

  • Won Ho Kim
    • 1
  • Justin Sangwook Ko
    • 1
  • Hyun Joo Ahn
    • 1
    Email author
  • Soo Joo Choi
    • 1
  • Byung Seop Shin
    • 1
  • Mi Sook Gwak
    • 1
  • Woo Seog Sim
    • 1
  • Mikyung Yang
    • 1
  1. 1.Department of Anesthesiology and Pain Medicine, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations