Skip to main content
Log in

Functional roles of ATP-sensitive potassium channel as related to anesthesia

  • JA Symposium
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature. 2006;440:470–6.

    Article  CAS  PubMed  Google Scholar 

  2. Miki T, Seino S. Roles of KATP channels as metabolic sensors in acute metabolic changes. J Mol Cell Cardiol. 2005;38:917–25.

    Article  CAS  PubMed  Google Scholar 

  3. Yokoshiki H, Sunagawa M, Seki T, Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol. 1998;274:C25–37.

    CAS  PubMed  Google Scholar 

  4. Kawano T, Zoga V, Gemes G, McCallum JB, Wu HE, Pravdic D, Liang MY, Kwok WM, Hogan Q, Sarantopoulos C. Suppressed Ca2+/CaM/CaMKII-dependent KATP channel activity in primary afferent neurons mediates hyperalgesia after axotomy. Proc Natl Acad Sci USA. 2009;106:8725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mannhold R. KATP channel openers: structure–activity relationships and therapeutic potential. Med Res Rev. 2004;24:213–66.

    Article  CAS  PubMed  Google Scholar 

  6. Stadnicka A, Marinovic J, Ljubkovic M, Bienengraeber MW, Bosnjak ZJ. Volatile anesthetic-induced cardiac preconditioning. J Anesth. 2007;21:212–9.

    Article  PubMed  Google Scholar 

  7. Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol. 1999;61:337–62.

    Article  CAS  PubMed  Google Scholar 

  8. Diltoer M, Camu F. Glucose homeostasis and insulin secretion during isoflurane anesthesia in humans. Anesthesiology. 1988;68:880–6.

    Article  CAS  PubMed  Google Scholar 

  9. Tanaka T, Nabatame H, Tanifuji Y. Insulin secretion and glucose utilization are impaired under general anesthesia with sevoflurane as well as isoflurane in a concentration-independent manner. J Anesth. 2005;19:277–81.

    Article  PubMed  Google Scholar 

  10. Zuurbier CJ, Keijzers PJ, Koeman A, Van Wezel HB, Hollmann MW. Anesthesia’s effects on plasma glucose and insulin and cardiac hexokinase at similar hemodynamics and without major surgical stress in fed rats. Anesth Analg. 2008;106:135–42.

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka K, Kawano T, Tomino T, Kawano H, Okada T, Oshita S, Takahashi A, Nakaya Y. Mechanisms of impaired glucose tolerance and insulin secretion during isoflurane anesthesia. Anesthesiology. 2009;111:1044–51.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka K, Kawano T, Tsutsumi YM, Kinoshita M, Kakuta N, Hirose K, Kimura M, Oshita S. Differential effects of propofol and isoflurane on glucose utilization and insulin secretion. Life Sci. 2011;88:96–103.

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka K, Ludwig LM, Kersten JR, Pagel PS, Warltier DC. Mechanisms of cardioprotection by volatile anesthetics. Anesthesiology. 2004;100:707–21.

    Article  CAS  PubMed  Google Scholar 

  14. Landoni G, Fochi O, Tritapepe L, Guarracino F, Belloni I, Bignami E, Zangrillo A. Cardiac protection by volatile anesthetics. A review. Minerva Anestesiol. 2009;75:269–73.

    CAS  Google Scholar 

  15. De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, Rodrigus IE, Van der Linden PJ. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology. 2003;99:314–23.

    Article  PubMed  Google Scholar 

  16. Stadnicka A, Bosnjak ZJ. Isoflurane decreases ATP sensitivity of guinea pig cardiac sarcolemmal KATP channel at reduced intracellular pH. Anesthesiology. 2003;98:396–403.

    Article  CAS  PubMed  Google Scholar 

  17. Turner LA, Fujimoto K, Suzuki A, Stadnicka A, Bosnjak ZJ, Kwok WM. The interaction of isoflurane and protein kinase C-activators on sarcolemmal KATP channels. Anesth Analg. 2005;100:1680–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kawano T, Oshita S, Tsutsumi Y, Tomiyama Y, Kitahata H, Kuroda Y, Takahashi A, Nakaya Y. Clinically relevant concentrations of propofol have no effect on adenosine triphosphate-sensitive potassium channels in rat ventricular myocytes. Anesthesiology. 2002;96:1472–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tomiyama Y, Kitahata H, Kuroda Y, Nakaya Y. Molecular mechanisms of the inhibitory effects of propofol and thiamylal on sarcolemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2004;100:338–46.

    Article  CAS  PubMed  Google Scholar 

  20. Kawano T, Oshita S, Takahashi A, Tsutsumi Y, Tanaka K, Tomiyama Y, Kitahata H, Nakaya Y. Molecular mechanisms underlying ketamine-mediated inhibition of sarcolemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2005;102:93–101.

    Article  CAS  PubMed  Google Scholar 

  21. Crystal GJ, Gurevicius J, Salem MR, Zhou X. Role of adenosine triphosphate-sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane. Anesthesiology. 1997;86:448–58.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka K, Kawano T, Nakamura A, Nazari H, Kawahito S, Oshita S, Takahashi A, Nakaya Y. Isoflurane activates sarcolemmal adenosine triphosphate-sensitive potassium channels in vascular smooth muscle cells: a role for protein kinase A. Anesthesiology. 2007;106:984–91.

    Article  CAS  PubMed  Google Scholar 

  23. Kawano T, Tanaka K, Mawatari K, Oshita S, Takahashi A, Nakaya Y. Hyperglycemia impairs isoflurane-induced adenosine triphosphate-sensitive potassium channel activation in vascular smooth muscle cells. Anesth Analg. 2008;106:858–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kawano T, Tanaka K, Chi H, Kimura M, Kawano H, Eguchi S, Oshita S. Effects of aging on isoflurane-induced and protein kinase A-mediated activation of ATP-sensitive potassium channels in cultured rat aortic vascular smooth muscle cells. J Cardiovasc Pharmacol. 2010;56:676–85.

    Article  CAS  PubMed  Google Scholar 

  25. Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2009;110:986–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD. Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain. 2009;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kawano T, Zoga V, McCallum JB, Wu HE, Gemes G, Liang MY, Abram S, Kwok WM, Hogan QH, Sarantopoulos CD. ATP-sensitive potassium currents in rat primary afferent neurons: biophysical, pharmacological properties, and alterations by painful nerve injury. Neuroscience. 2009;162:431–43.

    Article  CAS  PubMed  Google Scholar 

  28. Zoga V, Kawano T, Liang MY, Bienengraeber M, Weihrauch D, McCallum B, Gemes G, Hogan Q, Sarantopoulos C. KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. Mol Pain. 2010;6:6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cunha TM, Roman-Campos D, Lotufo CM, Duarte HL, Souza GR, Verri WA Jr, Funez MI, Dias QM, Schivo IR, Domingues AC, Sachs D, Chiavegatto S, Teixeira MM, Hothersall JS, Cruz JS, Cunha FQ, Ferreira SH. Morphine peripheral analgesia depends on activation of the PI3Kγ/AKT/nNOS/NO/KATP signaling pathway. Proc Natl Acad Sci USA. 2010;107:4442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kawano.

About this article

Cite this article

Kawano, T. Functional roles of ATP-sensitive potassium channel as related to anesthesia. J Anesth 26, 152–155 (2012). https://doi.org/10.1007/s00540-011-1286-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1286-1

Keywords

Navigation