Skip to main content
Log in

Blockade of 5-HT2A and/or 5-HT2C receptors modulates sevoflurane-induced immobility

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Blockade of 5-hydroxytryptamine (5-HT)2A receptors reportedly mediates or modulates the ability of isoflurane to produce immobility during noxious stimulation and would thereby influence MAC (the minimum alveolar concentration required to suppress movement in response to noxious stimulation in 50% of subjects). However, no data are yet available regarding the role of this receptor in the immobilizing action of sevoflurane. In this study, we examined how prior intraperitoneal administration of either the 5-HT2A receptor antagonist altanserin or the 5-HT2C/2B receptor antagonist SB 206553 might affect sevoflurane MAC in rats.

Methods

Three groups of six male Wistar rats weighing 250–350 g each received one of the following drugs dissolved in dimethyl sulfoxide intraperitoneally 30 min before MAC testing: (1) altanserin 10 mg/kg; (2) SB 206553 10 mg/kg; (3) no drug (vehicle control). MAC was defined as the average of the concentrations that just prevented or just permitted movement in response to clamping the tail for 1 min.

Results

The rank order of MAC values obtained after intraperitoneal drug pretreatment and sevoflurane exposure was altanserin < SB 206553 < vehicle control.

Conclusion

Considering the low levels of 5-HT2B receptors within the CNS, this result suggests that 5-HT2A and the 5-HT2C receptors are present within the neural circuitry influencing sevoflurane MAC. Blockade of 5-HT2A and/or 5-HT2C receptors may modulate the immobility produced by sevoflurane during noxious stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Franks NP, Lieb WR. Molecular and cellular mechanism of general aneaesthesia. Nature (Lond). 1994;367:607–14.

    Article  CAS  Google Scholar 

  2. Minami K, Minami M, Harris RA. Inhibition of 5-hydroxytryptamine type 2A receptor-induced currents by a-alcohols and anesthetics. J Pharmacol Exp Ther. 1997;281:1136–43.

    PubMed  CAS  Google Scholar 

  3. Zhang Y, Laster MJ, Eger EI II, Stabernack CR, Sooner JM. Blockade of 5-HT2A receptors may mediate or modulate part of the immobility produced by inhaled anesthetics. Anesth Analg. 2003;97:475–9.

    Google Scholar 

  4. Sathi ZS, Anisuzzaman ASM, Morishima S, Suzuki F, Tanaka T, Yoshiki H, Muramatsu I. Different affinities of native α1B-adrenoceptors for ketanserin between intact tissue segments and membrane preparations. Eur J Pharmacol. 2008;584:222–8.

    Article  PubMed  CAS  Google Scholar 

  5. Wouters W, Dun JW, Leysen JE, Laduron PM. Photoaffinity probe for serotonin and histamine receptors Synthesis and characterization of two azide analogues of ketanserin. J Biol Chem. 1985;260:8423–9.

    PubMed  CAS  Google Scholar 

  6. Herth MH, Kramer V, Piel M, Palner M, Riss PJ, Knudsen GM, Rösch F. Synthesis and in vitro affinities of various MDL 100907 derivatives as potential 18F-radioligands for 5-HT2A receptor imaging with PET. Bioorg Med Chem. 2009;17:2989–3002.

    Article  PubMed  CAS  Google Scholar 

  7. Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP. In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol. 1996;117:427–34.

    PubMed  CAS  Google Scholar 

  8. Vivien B, Langeron O, Coriat P, Riou B. Minimum alveolar anesthetic concentration of volatile anesthetics in normal and cardiomyopathic hamsters. Anesth Analg. 1999;88:489–93.

    Article  PubMed  CAS  Google Scholar 

  9. Dringenberg HC. Serotonergic receptor antagonists alter responses to general anaesthetics in rats. Br J Anaesth. 2000;85:904–6.

    Article  PubMed  CAS  Google Scholar 

  10. Kennett GA, Pittaway K, Blackburn TP. Evidence that 5-HT2C receptor antagonists are anxiolytic in the rat Geller–Seifter model of anxiety. Psychopharmacology. 1994;114:90–6.

    Article  PubMed  CAS  Google Scholar 

  11. McCreary AC, Cunningham KA. Effects of the 5-HT2C/2B antagonist SB 206553 on hyperactivity induced by cocaine. Neuropsychopharmacology 1999; 20: 556-564

    Google Scholar 

  12. Nakata Y, Goto T, Ishiguro Y, Terui K, Niimi Y, Morita S. Anesthetic doses of sevoflurane to block cardiovascular responses to incision when administered with xenon or nitrous oxide. Anesthesiology. 1999;91:369–73.

    Article  PubMed  CAS  Google Scholar 

  13. Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM. The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol. 1995;115:622–8.

    PubMed  CAS  Google Scholar 

  14. Pompeiano M, Palacios JM, Mengod G. Distribution of serotonin 5-HT2 receptor family mRNAs: comparisons between 5-HT2A and 5-HT2C receptors. Mol Brain Res. 1994;23:163–78.

    Article  PubMed  CAS  Google Scholar 

  15. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KCF. Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience. 1997;76:323–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zao ZQ, Chiechio S, Sun YG, Zhang KH, Zhao CS, Scott M, Johnson RL, Deneris ES, Renner KJ, Gereau RW IV, Chen ZF. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 2007;27:6045–6053.

    Google Scholar 

  17. Kupers R, Frokjaer VG, Naert A, Christensen R, Budtz-Joergensen E, Kehlet H, Knudsen GM. A PET [18F]altanserin study of 5-HT2A receptor binding in the human brain and responses to pain heat stimulation. NeuroImage. 2009;44:1001–7.

    Article  PubMed  Google Scholar 

  18. Michiels M, Monbaliu J, Meudermans W, Hendriks R, Geerts R, Woestenborghs R, Heykants J. Pharmacokinetics and tissue distribution of ketanserin in rat, rabbit, and dog. Arzneimittelforschung. 1988;38:775–84.

    PubMed  CAS  Google Scholar 

  19. Kashimoto S, Furuya A, Nonaka A, Oguchi T, Koshimizu M, Kumazawa T. The minimum alveolar concentration of sevoflurane in rats. Eur J Anaesthesiol. 1997;14:359–61.

    Article  PubMed  CAS  Google Scholar 

  20. Alhaider AA. Antinociceptive effect of ketanserin in mice: involvement of supraspinal 5-HT2 receptors in nociceptive transmission. Brain Res. 1991;543:335–40.

    Article  PubMed  CAS  Google Scholar 

  21. Chojnacka-Wójcik E, Kłodzińska A, Dereń-Wesołek A. Involvement of 5-HT2C receptors in the m-CPP-induced antinociception in mice. Pol J Pharmacol. 1994;46:423–8.

    PubMed  Google Scholar 

  22. Mukaida K, Shichino T, Koyanagi S, Himukashi S, Fukuda K. Activity of the serotonergic system. Anesth Analg. 2007;104:836–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Foundation for Promotion of Cancer Research in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Oshima.

About this article

Cite this article

Nagatani, H., Oshima, T., Urano, A. et al. Blockade of 5-HT2A and/or 5-HT2C receptors modulates sevoflurane-induced immobility. J Anesth 25, 225–228 (2011). https://doi.org/10.1007/s00540-011-1103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1103-x

Keywords

Navigation