Skip to main content
Log in

The cellular mechanisms underlying the inhibitory effects of isoflurane and sevoflurane on arginine vasopressin-induced vasoconstriction

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Arginine vasopressin (AVP) is a potent vasoconstrictor that is sometimes used for the treatment of refractory vasodilatory shock. AVP constricts vascular smooth muscle by increasing both intracellular calcium concentration ([Ca2+] i ) and myofilament Ca2+ sensitivity. However, the modulation of AVP-mediated vasoconstriction by volatile anesthetics remains to be determined. This study investigates the effects of isoflurane and sevoflurane on AVP-induced vasoconstriction and elucidates the underlying mechanisms, with an emphasis on the Ca2+-mediated pathways and Ca2+ sensitization pathways of rat aortic smooth muscle.

Methods

The effects of isoflurane and sevoflurane on AVP-induced vasoconstriction and on the AVP-induced increase in [Ca2+] i and Rho activity in rat aorta were investigated by isometric force recording, by measuring [Ca2+] i using fluorescence dye, and by Western blotting techniques.

Results

Arginine vasopressin (10−7 M) elicited a transient contractile response that was inhibited by isoflurane and sevoflurane in a concentration-dependent manner. AVP (10−7 M) induced a transient increase in intracellular Ca2+ concentration ([Ca2+] i ). Isoflurane and sevoflurane also inhibited an AVP-induced increase in [Ca2+] i in a concentration-dependent manner. AVP (10−7 M) increased the Rho activity that was attenuated by 2 minimum alveolar concentration of sevoflurane (P < 0.01), but not by an equipotent concentration of isoflurane.

Conclusion

Arginine vasopressin-induced vasoconstriction is mediated by an increase in [Ca2+] i and by the activation of the Rho-Rho kinase pathway in rat aortic smooth muscle. Although both isoflurane and sevoflurane, at clinically relevant concentrations, attenuate AVP-induced contraction, the cellular mechanisms of their inhibitory effects appear to differ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirano K. Current topics in the regulatory mechanism underlying the Ca2+ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci. 2007;104:109–15.

    Article  CAS  PubMed  Google Scholar 

  2. Yu J, Tokinaga Y, Ogawa K, Iwahashi S, Hatano Y. Sevoflurane inhibits angiotensin II-induced, protein kinase C-mediated but not Ca2+-elicited contraction of rat aortic smooth muscle. Anesthesiology. 2004;100:879–84.

    Article  CAS  PubMed  Google Scholar 

  3. Ishikawa A, Ogawa K, Tokinaga Y, Uematsu N, Mizumoto K, Hatano Y. The mechanism behind the inhibitory effect of isoflurane on angiotensin II-induced contraction is different from that of sevoflurane. Anesth Analg. 2007;105:97–102.

    Article  CAS  PubMed  Google Scholar 

  4. Qi F, Ogawa K, Tokinaga Y, Uematsu N, Minonishi T, Hatano Y. Volatile anesthetics inhibit angiotensin II-induced vascular contraction by modulating myosin light chain phosphatase inhibiting protein, CPI-17 and regulatory subunit, MYPT1 phosphorylation. Anesth Analg. 2009;109:412–7.

    Article  CAS  PubMed  Google Scholar 

  5. Fallet RW, Ikenaga H, Bast JP, Carmines PK. Relative contribution of Ca2+ mobilization and influx in renal arteriolar response to arginine vasopressin. Am J Physiol Renal Physiol. 2005;288:F545–51.

    Article  CAS  PubMed  Google Scholar 

  6. Henderson KK, Byron KL. Vasopressin-induced vasocostriction: two concentration-dependent signaling pathways. J Appl Physiol. 2007;102:1402–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cavarape A, Bauer J, Bartoli E, Endlich K, Parekh N. Effects of angiotensin II arginine vasopressin and thromboxane A2 in renal vascular bed: role of rho-kinase. Nephrol Dial Transplant. 2003;18:1764–9.

    Article  CAS  PubMed  Google Scholar 

  8. Streefkerk JO, Hoogaars WMH, Christoffels VM, Sand C, Pfaffendorf M, Peters SLM, Van Zwieten PA. Vasopressin-induced vasoconstriction is dependent on MAPKerk1/2 phosphorylation. Fundam Clin Pharmacol. 2004;18:45–50.

    Article  CAS  PubMed  Google Scholar 

  9. Den Ouden DT, Meinders AE. Vasopressin: physiology and clinical use in patients with vasodilatory shock: a review. Neth J Med. 2005;63:4–13.

    Google Scholar 

  10. Morales DL, Garrido MJ, Madigan JD, Helman DN, Faber J, Williams MR, Landry DW, Oz MC. A double-blind randomized trial: prophylactic vasopressin reduces hypotension after cardiopulmonary bypass. Ann Thorac Surg. 2003;75:926–30.

    Article  PubMed  Google Scholar 

  11. Morales DL, Gregg D, Helman DN, Williams MR, Naka Y, Landry DW, Oz MC. Arginine vasopressin in the treatment of 50 patients with postcardiotomy vasodilatory shock. Ann Thorac Surg. 2000;69:102–6.

    Article  CAS  PubMed  Google Scholar 

  12. Schummer W, Schummer C, Wippermann J, Fuchs J. Anaphylactic shock: is vasopressin the drug of choice? Anesthesiology. 2004;101:1025–7.

    Article  PubMed  Google Scholar 

  13. Williams SR, Denault A, Pellerin M, Martineau R. Vasopressin for treatment of shock following aprotinin administration. Can J Anaesth. 2004;51:169–72.

    Article  PubMed  Google Scholar 

  14. Meng L, Williams EL. Case report: treatment of rocuronium-induced anaphylactic shock with vasopressin. Can J Anaesth. 2008;55:437–40.

    Article  PubMed  Google Scholar 

  15. Fujihara H, Fukuda S, Fujihara N, Shimoji K. The effects of halothane on arginine-vasopressin-induced Ca2+ mobilization from the intracellular stores and the receptor-mediated Ca2+ entry from the extracellular space in single cultured smooth muscle cells of rat aorta. Anesth Analg. 1996;83:584–90.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Ogawa K, Tokinaga Y, Hatano Y. Sevoflurane inhibits guanosine 5′-[γ-thio] triphosphate-stimulated, Rho/Rho kinase-mediated contraction of rat aortic smooth muscle. Anesthesiology. 2003;99:645–51.

    Article  Google Scholar 

  17. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    Article  CAS  PubMed  Google Scholar 

  18. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–82.

    Article  CAS  PubMed  Google Scholar 

  19. Dünser MW, Mayr AJ, Ulmer H, Knotzer H, Sumann G, Pajk W, Friesenecker B, Hasibeder WR. Arginine vasopressin in advanced vasodilatory shock, a prospective, randomized, controlled study. Circulation. 2003;107:2313–9.

    Article  PubMed  CAS  Google Scholar 

  20. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–87.

    Article  CAS  PubMed  Google Scholar 

  21. Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22:32–9.

    Article  CAS  PubMed  Google Scholar 

  22. Akata T. General anesthetics and vascular smooth muscle. Direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology. 2007;106:365–91.

    Article  PubMed  Google Scholar 

  23. Yu J, Mizumoto K, Kakutani T, Hasegawa A, Ogawa K, Hatano Y. Comparison of the effects of isoflurane and sevoflurane on protein tyrosine phosphorylation-mediated vascular contraction. Acta Anaesthesiol Scand. 2005;49:852–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tsuneyoshi I, Yamada H, Kakihara Y, Nakamura M, Nakao Y, Boyle WA 3rd. Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med. 2001;29:487–93.

    Article  CAS  PubMed  Google Scholar 

  25. Dünser MW, Hasibeder WR, Wenzel V, Scjwarz S, Ulmer H, Knotzer H, Pajk W, Friesenecker B, Mayr AJ. Endocrinologic response to vasopressin infusion in advanced vasodilatory shock. Crit Care Med. 2004;32:126–71.

    Article  Google Scholar 

  26. Noguera I, Medina P, Segarra G, Martínez MC, Aldasoro M, Vila JM, Lluch S. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric arteries. Br J Pharmacol. 1997;122:431–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hamu Y, Kanmura Y, Tsuneyoshi I, Yoshimura N. The effects of vasopressin on endotoxin-induced attenuation of contractile responses in human gastroepiploic arteries in vitro. Anesth Analg. 1999;88:542–8.

    Article  CAS  PubMed  Google Scholar 

  28. Okamura T, Ayajiki K, Fujioka H, Toda N. Mechanisms underlying arginine vasopressin-induced relaxation in monkey isolated coronary arteries. J Hypertens. 1999;17:673–8.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura K, Terasako K, Toda H, Miyawaki I, Kakuyama M, Nishiwada M, Hatano Y, Mori K. Mechanisms of inhibition of endothelium-dependent relaxation by halothane, isoflurane, and sevoflurane. Can J Anaesth. 1994;41:340–6.

    Article  CAS  PubMed  Google Scholar 

  30. Yu J, Ogawa K, Tokinaga Y, Iwahashi S, Hatano Y. The vascular relaxing effects of sevoflurane and isoflurane are more important in hypertensive than in normotensive rats. Can J Anaesth. 2004;51:979–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided solely from institutional and departmental sources.

Conflict of interest

None of the authors have any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Ogawa.

About this article

Cite this article

Shimogai, M., Ogawa, K., Tokinaga, Y. et al. The cellular mechanisms underlying the inhibitory effects of isoflurane and sevoflurane on arginine vasopressin-induced vasoconstriction. J Anesth 24, 893–900 (2010). https://doi.org/10.1007/s00540-010-1033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-010-1033-z

Keywords

Navigation