Skip to main content

Advertisement

Log in

Effects of intravenous adenosine 5′-triphosphate on intraoperative hemodynamics and postoperative pain in patients undergoing major orofacial surgery: a double-blind placebo-controlled study

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

We conducted a double-blind placebo-controlled study to investigate the effects of the intraoperative intravenous infusion of adenosine 5′-triphosphate (ATP) on intraoperative hemodynamics and postoperative pain in patients undergoing major orofacial surgery.

Methods

Thirty patients (age, 16–42 years; 16 males/14 females) scheduled for sagittal split ramus osteotomy were assigned in a double-blind fashion to receive intraoperative intravenous infusion of ATP (n = 15) or saline (n = 15). Anesthesia was induced and maintained with propofol, fentanyl, and vecuronium. Local anesthesia was added for intraoperative analgesia. In the ATP group, ATP was infused at a rate of 160 μg·kg−1·min−1 throughout surgery. Postoperative pain was managed with intravenous patient-controlled analgesia (PCA) with morphine. The intensity of postoperative pain was assessed with a verbal numeric rating scale (NRS). Morphine consumption was also assessed.

Results

There were no differences in demographic, anesthetic, and surgical data between the ATP and placebo groups. Intraoperatively, ATP effectively suppressed responses of blood pressure and heart rate to painful surgical stimuli. There were no differences in postoperative NRS scores between the two groups. However, postoperative morphine consumption was significantly less in the ATP group, compared with the placebo group, throughout the 72-h postoperative observation period. Cumulative morphine consumption for 72 h postoperatively was 47% less with ATP, compared with placebo. No adverse effect of ATP was observed.

Conclusion

Our data suggest that intraoperative ATP infusion can blunt hemodynamic responses to surgical stimuli and produce prolonged analgesia in patients undergoing major orofacial surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawynok J. Adenosine receptor activation and nociception. Eur J Pharmacol. 1998;317:1–11.

    Article  Google Scholar 

  2. Segerdahl M, Ekblom A, Sandelin K, Wickman M, Sollevi A. Peroperative adenosine infusion reduces the requirements for isoflurane and postoperative analgesics. Anesth Analg. 1995;80:1145–1149.

    Article  PubMed  CAS  Google Scholar 

  3. Segerdahl M, Persson E, Ekblom A, Sollevi A. Peroperative adenosine infusion reduces isoflurane concentrations during general anesthesia for shoulder surgery. Acta Anaesthesiol Scand. 1996;40:792–797.

    Article  PubMed  CAS  Google Scholar 

  4. Segerdahl M, Irestedt L, Sollevi A. Antinociceptive effect of perioperative adenosine infusion in abdominal hysterectomy. Acta Anaesthesiol Scand. 1997;41:473–479.

    Article  PubMed  CAS  Google Scholar 

  5. Zarate E, Sa Rego MM, White PF, Duffy L, Shearer VE, Griffin JD, Whitten CW. Comparison of adenosine and remifentanil infusions as adjuvants to desflurane anesthesia. Anesthesiology. 1999;90:956–963.

    Article  PubMed  CAS  Google Scholar 

  6. Fukunaga AF, Alexander GE, Stark CW. Characterization of the analgesic actions of adenosine: comparison of adenosine and remifentanil infusions in patients undergoing major surgical procedures. Pain. 2003;101:129–138.

    Article  PubMed  CAS  Google Scholar 

  7. Chizh BA, Illes P. P2X receptors and nociception. Pharmacol Rev. 2001;53:553–568.

    PubMed  CAS  Google Scholar 

  8. Jarvis MF. Contributions of P2X(3) homometric and heterometric channels to acute and chronic pain. Expert Opin Ther Targets. 2003;7:513–522.

    Article  PubMed  CAS  Google Scholar 

  9. Shinoda M, Ozaki N, Sugiura Y. Involvement of ATP and its receptors on nociception in rat model of masseter muscle pain. Pain. 2008;134:148–157.

    Article  PubMed  CAS  Google Scholar 

  10. Gordon JL. Extracellular ATP: effects, sources and fate. Biochem J. 1986;233:309–319.

    PubMed  CAS  Google Scholar 

  11. Agteresch HJ, Dagnelie PC, van den Berg JW, Wilson JH. Adenosine triphosphate: established and potential clinical applications. Drugs. 1999;58:211–232.

    Article  PubMed  CAS  Google Scholar 

  12. Hayashida M, Fukuda K, Fukunaga A, Meno A, Sato K, Tarui K, Arita H, Kaneko Y, Hanaoka K. Analgesic effect of intravenous ATP on postherpetic neuralgia in comparison with responses to intravenous ketamine and lidocaine. J Anesth. 2005;19:31–35.

    Article  PubMed  Google Scholar 

  13. Fukuda K, Hayashida M, Fukunaga A, Kasahara M, Koukita Y, Ichinohe T, Kaneko Y. Pain-relieving effects of intravenous ATP in chronic intractable orofacial pain: an open-label study. J Anesth. 2007;21:24–30.

    Article  PubMed  Google Scholar 

  14. Segerdahl M, Sollevi A. Adenosine and pain relief: a clinical overview. Drug Dev Res. 1998;45:151–158.

    Article  CAS  Google Scholar 

  15. Hayashida M, Fukuda K, Fukunaga A. Clinical application of adenosine and ATP for pain control. J Anesth. 2005;19:225–235.

    Article  PubMed  Google Scholar 

  16. Ramsay MA, Savege TM, Simpson BR, Goodwin R. Controlled sedation with alphaxalone-alphadolone. BMJ 1974;2:656–659.

    Article  PubMed  CAS  Google Scholar 

  17. Biaggioni I, Olafsson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man; evidence for chemoreceptor activation. Circ Res. 1987;61:779–786.

    PubMed  CAS  Google Scholar 

  18. Fukunaga AF. Adenosine compounds. In: White PF, editor. Textbook of intravenous anesthesia. Baltimore: Williams & Wilkins; 1997. 413–432.

    Google Scholar 

  19. Schindler M, Harris CA, Hayes B, Papotti M, Humphrey PP. Immunohistochemical localization of adenosine A1 receptors in human brain regions. Neurosci Lett. 2001;297:211–215.

    Article  PubMed  CAS  Google Scholar 

  20. Goadsby PJ, Hoskin KL, Storer RJ, Edvinsson L, Connor HE. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain. 2002;125:1392–1401.

    Article  PubMed  CAS  Google Scholar 

  21. Hayashida M, Fukunaga A, Fukuda K, Sakurai S, Mamiya H, Ichinohe T, Kaneko Y, Hanaoka K. The characteristics of intravenous adenosine-induced antinociception in a rabbit model of acute nociceptive pain: a comparative study with remifentanil. Anesth Analg. 2006;103:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  22. Faulds D, Chrisp P, Buckley MM. Adenosine. An evaluation of its use in cardiac diagnostic procedures, and in the treatment of paroxysmal supraventricular tachycardia. Drugs. 1991;41:596–624.

    Article  PubMed  CAS  Google Scholar 

  23. Satya P. Kunapuli SP, Daniel JL. P2 receptor subtypes in the cardiovascular system. Biochem J. 1998;336:513–523.

    Google Scholar 

  24. Rongen GA, Floras JS, Lenders JW, Thien T, Smits P. Cardiovascular pharmacology of purines. Clin Sci (Lond). 1997;92:13–24.

    CAS  Google Scholar 

  25. Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev. 2006;58:58–86.

    Article  PubMed  CAS  Google Scholar 

  26. Fukunaga AF, Flacke WE, Bloor BC. Hypotensive effects of adenosine and adenosine triphosphate compared with sodium nitroprusside. Anesth Analg. 1982;61:273–278.

    Article  PubMed  CAS  Google Scholar 

  27. Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89:1371–1388.

    Article  PubMed  CAS  Google Scholar 

  28. Murakami H, Ohkura A, Takanaga H, Matsuo H, Koyabu N, Naito M, Tsuruo T, Ohtani H, Sawada Y. Functional characterization of adenosine transport across the BBB in mice. Int J Pharm. 2005;290:37–44.

    Article  PubMed  CAS  Google Scholar 

  29. Cansev M. Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev. 2006;52:389–397.

    Article  PubMed  CAS  Google Scholar 

  30. Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol. 1994;76:5–13.

    PubMed  CAS  Google Scholar 

  31. Montesinos MC, Desai A, Delano D, Chen JF, Fink JS, Jacobson MA, Cronstein BN. Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum. 2003;48:240–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Handa, T., Fukuda, KI., Hayashida, M. et al. Effects of intravenous adenosine 5′-triphosphate on intraoperative hemodynamics and postoperative pain in patients undergoing major orofacial surgery: a double-blind placebo-controlled study. J Anesth 23, 315–322 (2009). https://doi.org/10.1007/s00540-009-0751-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-009-0751-6

Key words

Navigation