Skip to main content
Log in

Functional analysis of ryanodine receptor type 1 p.R2508C mutation in exon 47

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Malignant hyperthermia (MH) is a pharmacogenetic disorder of intracellular calcium homeostasis with an autosomal dominant inheritance. Most of the reported mutations in exon 47 were identified in Asian patients. However, no functional analysis of p.R2508C has been performed. We therefore conducted a functional analysis of the mutation by altering calcium homeostasis in human embryonic kidney (HEK) 293 cells transfected with the p.R2508C mutation in exon 47 of the ryanodine receptor 1 (RYR1).

Methods

The entire RYR1 coding region from genomic DNA, which was extracted from the biopsied muscle specimens of two patients, was sequenced. The p.R2508C mutation was introduced into rabbit RYR1 cDNA, and wild-type or p.R2508C mutant cDNAs were transfected into HEK-293 cells. Using the calcium-sensitive probe Fura 2, we utilized the 340/380 nm ratio to analyze alterations in calcium homeostasis following treatment with caffeine and 4-chloro-m-cresol (4CmC).

Results

Genetic analysis revealed a C→T point mutation of RYR1 exon 47 at position 7522, resulting in an amino acid exchange of arginine for cysteine at amino acid 2508. The half-maximal activation concentrations (EC50) of caffeine and 4CmC for HEK-293 cells transfected with the p.R2508C mutation were 1.86 ± 0.23 mM and 73.14 ± 19.44 μM, while those for wild-type RYR1 were 2.62 ± 0.23 mM and 179.31 ± 35.23 μM, respectively.

Conclusion

We demonstrated that the transfected RYR1 mutant was more sensitive to caffeine and 4CmC than wildtype RYR1. These findings suggest that the p.R2508C mutation may be pathogenetic for susceptibility to MH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stowell KM. Malignant hyperthermia: a pharmacogenetic disorder. Pharmacogenomics. 2008;9:1657–1672.

    Article  PubMed  CAS  Google Scholar 

  2. Monnier N, Kozak-Ribbens G, Krivosic-Horber R, Nivoche Y, Qi D, Kraev N, Loke J, Sharma P, Tegazzin V, Figarella-Branger D, Roméro N, Mezin P, Bendahan D, Payen JF, Depret T, Maclennan DH, Lunardi J. Correlations between genotype and pharmacological, histological, functional, and clinical phenotypes in malignant hyperthermia susceptibility. Hum Mutat. 2005;26: 413–425.

    Article  PubMed  CAS  Google Scholar 

  3. Robinson R, Carpenter D, Shaw MA, Halsall J, Hopkins PM. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat. 2006;27:977–989.

    Article  PubMed  CAS  Google Scholar 

  4. Ibarra MCA, Wu S, Murayama K, Minami N, Ichihara Y, Kikuchi H, Noguchi S, Hayashi TK, Ochiai R, Nishino I. Malignant hyperthermia in Japan. Anesthesiology. 2006;104:1146–1154.

    Article  Google Scholar 

  5. Wu S, Ibarra CAM, Malicdan MCV, Murayama K, Ichihara Y, Kikuchi H, Nosaka I, Noguchi S, Hayashi YK, Nishino I. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain. 2006;129:1470–1480.

    Article  PubMed  Google Scholar 

  6. Kim DC, Kim DS. Mutation screening of the entire ryanodine receptor gene (RYR1) in Korean malignant hyperthermia families. J Anesth. 2008;22S:148.

    Google Scholar 

  7. http://www.emhg.org/index.php?option=com_content&task=view&id=60&Itemid=86. Accessed Dec 4 2008.

  8. Endo M, Iino M. Measurement of Ca release in skinned fibers from skeletal muscle. Methods Enzymol. 1988;157:12–26.

    Article  PubMed  CAS  Google Scholar 

  9. Migita T, Mukaid K, Kawamoto M, Kobayashi M, Yuge O. Fulminant- type malignant hyperthermia in Japan: cumulative analysis of 383 cases. J Anesth. 2007;21:285–258.

    Article  PubMed  Google Scholar 

  10. Oku S, Mukaida K, Nosaka S, Sai Y, Maehara Y, Yuge O. Comparison of the in vitro caffeine-holothane contracture test with the Ca-induced Ca release rate test in patients suspected of having malignant hyperthermia susceptibility. J Anesth. 2000;14:6–13.

    Article  PubMed  CAS  Google Scholar 

  11. Tong J, Oyamada H, Demaurex N, Grinstein S, McCarthy TV, MacLennan DHJ. Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. Biol Chem. 1997;272:26 332–339.

    CAS  Google Scholar 

  12. Wehner M, Rueffert H, Koening F, Neuhaus J, Olthoff D. Increased sensitivity to 4-chloro-m-cresol and caffeine in primary myotubes from malignant hyperthermia susceptible individuals carrying the ryanodine receptor 1 Thr2206Met (C6617T) mutation. Clin Genet. 2002;62:135–146.

    Article  PubMed  CAS  Google Scholar 

  13. Weigl LG, Ludwig-Papst C, Kress HG. 4-Chloro-m-cresol cannot detect malignant hyperthermia equivocal cells in an alternative minimally invasive diagnostic test of malignant hyperthermia susceptibility. Anesth Analg. 2004;99:103–107.

    Article  PubMed  CAS  Google Scholar 

  14. Wehner M, Rueffert H, Koening F, Meinecke CD, Olthoff D. The Ile2453Thr mutation in the ryanodine receptor gene 1 is associated with facilitated calcium release from sarcoplasmic reticulum by 4-chloro-m-cresol in human myotubes. Cell Calcium. 2003;34:163–168.

    Article  PubMed  CAS  Google Scholar 

  15. Kaufmann A, Kraft B, Michalek-Sauberer A, Weigl LG. Novel ryanodine receptor mutation that may cause malignant hyperthermia. Anesthesiology. 2008;109:457–464.

    Article  PubMed  CAS  Google Scholar 

  16. Tong J, McCarthy TV, McLennan DH. Measurement of resting cytosolic Ca2+ concentration and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem. 1999;274:693–702.

    Article  PubMed  CAS  Google Scholar 

  17. Monnier N, Romero NB, Lerale J, Nivoche Y, Qi D, MacLennan DH, Fardeau M, Lunardi J. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum Mol Genet. 2000;9:2599–608.

    Article  PubMed  CAS  Google Scholar 

  18. Urwyler A, Deufel T, McCarthy T, West S for the European Malignant Hyperthermia Group. Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth. 2001;86:283–287.

    Article  PubMed  CAS  Google Scholar 

  19. Sambuughin N, Holley H, Muldoon S, Brandom BW, de Bantel AM, Tobin JR, Nelson TE, Goldfarb LG. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the North American population. Anesthesiology. 2005;102:515–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Migita, T., Mukaida, K., Hamada, H. et al. Functional analysis of ryanodine receptor type 1 p.R2508C mutation in exon 47. J Anesth 23, 341–346 (2009). https://doi.org/10.1007/s00540-009-0746-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-009-0746-3

Key words

Navigation