Skip to main content
Log in

Inhibitory effect of low-dose pentazocine on the development of antinociceptive tolerance to morphine

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The development of antinociceptive tolerance to morphine is one of the major problems in its clinical use. Therefore, exploring effective measures to prevent morphine tolerance is of great clinical relevance. We evaluated whether pentazocine could prevent morphine tolerance in mice.

Methods

Five groups of male ICR mice received repeated subcutaneous (s.c.) injections of morphine at a high dose (10 mg·kg−1) or saline, concomitantly with s.c. injections of pentazocine at low, subanalgesic doses (0.1, 0.3, or 1.0 mg·kg−1) or saline, respectively, once daily for 14 days. On day 15, mice received co-injections of morphine and pentazocine 120 min after pretreatment with nor-binaltorphimine (5 mg·kg−1), a selective κ-opioid receptor antagonist. The tail pressure threshold was measured before and 60 min after the daily drug co-injections.

Results

Repeated s.c. co-injections of morphine and saline resulted in a progressive decrease in morphine-induced antinociception, due to the development of morphine tolerance. Co-injections of pentazocine (0.1, 0.3, and 1.0 mg·kg−1) with morphine potentiated the morphine-induced antinociception dose-dependently by preventing the development of morphine tolerance. Nor-binaltorphimine completely inhibited the chronic antinociception maintained by co-injections of morphine and pentazocine.

Conclusion

When chronically co-administered with morphine, pentazocine at low, subanalgesic doses dose-dependently potentiated morphine-induced antinociception in morphine-tolerant mice, through its κ-opioid-receptor-mediated tolerance-preventing activity. Because pentazocine is the only agonist-antagonist analgesic that has an effective oral formulation suitable for chronic administration, the results of the present study warrant clinical trials of pentazocine to assess its tolerance-preventing activity in patients with cancer pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foley KM. Controlling cancer pain. Hosp Pract. 2000;35:101–108, 111–2.

    CAS  Google Scholar 

  2. Elliott K, Kest B, Man A, Kao B, Inturrisi CE. N-Methyl-Daspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development. Neuropsychopharmacology. 1995;13:347–356.

    Article  PubMed  CAS  Google Scholar 

  3. Pan ZZ. mu-Opposing actions of kappa-opioid receptor. Trends Pharmacol Sci. 1998;19:94–98.

    Article  PubMed  CAS  Google Scholar 

  4. Visser E, Schug SA. The role of ketamine in pain management. Biomed Pharmacother. 2006;60:341–348.

    Article  PubMed  CAS  Google Scholar 

  5. Dudgeon DJ, Bruera E, Gagnon B, Watanabe SM, Allan SJ, Warr DG, MacDonald SM, Savage C, Tu D, Pater JL. A phase III randomized, double-blind, placebo-controlled study evaluating dextromethorphan plus slow-release morphine for chronic cancer pain relief in terminally ill patients. J Pain Symptom Manage. 2007;33:365–371.

    Article  PubMed  CAS  Google Scholar 

  6. Shu H, Hayashida M, Huang W, An K, Chiba S, Hanaoka K, Arita H. The comparison of effects of processed Aconiti tuber, U50488H and MK-801 on the antinociceptive tolerance to morphine. J Ethnopharmacol. 2008;117:158–165.

    Article  PubMed  Google Scholar 

  7. Gutstein HB, Akil H. Opioid analgesics. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman’s: the pharmacological basis of therapeutics. New York: McGrawHill/Hardman; 2006. p. 547–590.

    Google Scholar 

  8. Pfeiffer A, Brantl V, Herz A, Emrich HM. Psychotomimesis mediated by κ-opiate receptors. Science. 1986;233:774–776.

    Article  PubMed  CAS  Google Scholar 

  9. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Enadoline, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans. Psychopharmacology. 2001;157:151–162.

    Article  PubMed  CAS  Google Scholar 

  10. Dortch-Carnes J, Potter DE. Bremazocine: a kappa-opioid agonist with potent analgesic and other pharmacologic properties. CNS Drug Rev. 2005;11:195–212.

    PubMed  CAS  Google Scholar 

  11. Omiya Y, Goto K, Suzuki Y, Ishige A, Komatsu Y. Analgesia-producing mechanism of processed Aconiti tuber: role of dynorphin, an endogenous kappa-opioid ligand, in rodent spinal cord. Jpn J Pharmacol. 1999;79:295–301.

    Article  PubMed  CAS  Google Scholar 

  12. Shu H, Arita H, Hayashida M, Sekiyama H, Hanaoka K. Effects of processed Aconiti tuber and its ingredient alkaloids on the development of antinociceptive tolerance to morphine. J Ethnopharmacol. 2006;103:398–405.

    Article  PubMed  Google Scholar 

  13. Shu H, Arita H, Hayashida M, Chiba S, Sekiyama H, Hanaoka K. Inhibition of morphine tolerance by processed Aconiti tuber is mediated by kappa-opioid receptors. J Ethnopharmacol. 2006;106:263–271.

    Article  PubMed  Google Scholar 

  14. Shu H, Hayashida M, Chiba S, Sekiyama H, Kitamura T, Yamada Y, Hanaoka K, Arita H. Inhibitory effect of processed Aconiti tuber on the development of antinociceptive tolerance to morphine: evaluation with a thermal assay. J Ethnopharmacol. 2007;113:560–563.

    Article  PubMed  Google Scholar 

  15. Hoskin PJ, Hanks GW. Opioid agonist-antagonist drugs in acute and chronic pain states. Drugs. 1991;41:326–344.

    Article  PubMed  CAS  Google Scholar 

  16. Takemori AE, Ho BY, Naeseth JS, Portoghese PS. Norbinaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther. 1988;246:255–258.

    PubMed  CAS  Google Scholar 

  17. Endoh T, Matsuura H, Tanaka C, Nagase H. Nor-binaltorphimine: a potent and selective kappa-opioid receptor antagonist with long-lasting activity in vivo. Arch Int Pharmacodyn Ther. 1992;316:30–42.

    PubMed  CAS  Google Scholar 

  18. Zernig G, Burke T, Lewis JW, Woods JH. Mechanism of clocinnamox blockade of opioid receptors: evidence from in vitro and ex vivo binding and behavioral assays. J Pharmacol Exp Ther. 1996;279:23–31.

    PubMed  CAS  Google Scholar 

  19. Paronis CA, Woods JH. Clocinnamox dose-dependently antagonizes morphine analgesia and [3H] DAMGO binding in rats. Eur J Pharmacol. 1997;337:27–34.

    Article  PubMed  CAS  Google Scholar 

  20. Tulunay FC, Jen MF, Chang JK, Loh HH, Lee NM. Possible regulatory role of dynorphin on morphine- and beta-endorphin-induced analgesia. J Pharmacol Exp Ther. 1981;219:296–298.

    PubMed  CAS  Google Scholar 

  21. Schmauss C, Herz A. Intrathecally administered dynorphine-(1–17) modulates morphine-induced antinociception differently in morphine-naïve and morphine-tolerant rats. Eur J Pharmacol. 1987;135:429–431.

    Article  PubMed  CAS  Google Scholar 

  22. Ramarao P, Jablonski HI Jr, Rehder KR, Bhargava HN. Effect of kappa-opioid receptor agonists on morphine analgesia in morphine-naïve and morphine-tolerant rats. Eur J Pharmacol. 1988;156:239–246.

    Article  PubMed  CAS  Google Scholar 

  23. Tao PL, Hwang CL, Chen CY. U-50,488 blocks the development of morphine tolerance and dependence at a very low dose in guinea pigs. Eur J Pharmacol. 1994;256:281–286.

    Article  PubMed  CAS  Google Scholar 

  24. Varga EV, Yamamura HI, Rubenzik MK, Stropova D, Navratilova E, Roeske WR. Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life Sci. 2003;74:299–311.

    Article  PubMed  CAS  Google Scholar 

  25. Ossipov MH, Lai J, King T, Vanderah TW, Porreca F. Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers. 2005;80:319–324.

    Article  PubMed  CAS  Google Scholar 

  26. Pan ZZ, Tershner SA, Fields HL. Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor. Nature. 1997;389:382–385.

    Article  PubMed  CAS  Google Scholar 

  27. Bie B, Pan ZZ. Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions of kappa-opioid receptors. J Neurosci. 2003;23:7262–7268.

    PubMed  CAS  Google Scholar 

  28. Blane GF, Dugdall D. Interactions of narcotic antagonists and antagonist-analgesics. J Pharm Pharmacol. 1968;20:547–552.

    PubMed  CAS  Google Scholar 

  29. Suzuki T, Narita M, Misawa M, Nagase H. Pentazocine-induced biphasic analgesia in mice. Life Sci. 1991;48:1827–1835.

    Article  PubMed  CAS  Google Scholar 

  30. Shimada A, Iizuka H, Yanagita T. Agonist-antagonistic interactions of pentazocine with morphine studied in mice. Pharmacol Biochem Behav. 1984;20:531–535.

    Article  PubMed  CAS  Google Scholar 

  31. Tokuyama S, Nagase R, Mashida E, Hamabe W. Involvement of kappa opioid receptors in formalin-induced inhibition of analgesic tolerance to morphine in mice. J Pharm Pharmacol. 2007;59:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  32. Tsuji M, Yamazaki M, Takeda H, Matsumiya T, Nagase H, Tseng LF, Narita M, Suzuki T. The novel kappa-opioid receptor agonist TRK-820 has no affect on the development of antinociceptive tolerance to morphine in mice. Eur J Pharmacol. 2000;394:91–95.

    Article  PubMed  CAS  Google Scholar 

  33. Wakabayashi H, Hiraga T, Yoneda T. Mechanism of cancer-induced bone pain. Clin Calcium. 2006;16:605–611.

    PubMed  CAS  Google Scholar 

  34. Backonja MM, Miletic G, Miletic V. The effect of continuous morphine analgesia on chronic thermal hyperalgesia due to sciatic constriction injury in rats. Neurosci Lett. 1995;196:61–64.

    Article  PubMed  CAS  Google Scholar 

  35. Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci. 2002;2:9980–9989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chiba, S., Hayashida, M., Yoshikawa, M. et al. Inhibitory effect of low-dose pentazocine on the development of antinociceptive tolerance to morphine. J Anesth 23, 99–107 (2009). https://doi.org/10.1007/s00540-008-0697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0697-0

Key words

Navigation