Skip to main content

Advertisement

Log in

Systematic evaluation of nitric oxide, tetrahydrobiopterin, and anandamide levels in a porcine model of endotoxemia

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Using a lipopolysaccharide (LPS)-treated porcine model, we examined: (1) whether nitric oxide (NO), anandamide, and tetrahydrobiopterin (BH4) increased or not in early endotoxic shock; and (2) the location of the major site of production of these molecules, by comparing their concentrations in arteries and the portal and hepatic veins.

Methods

Ten pigs received an infusion of LPS at 1.7 μg·kg−1·h−1 via the portal vein for 240 min. Consecutive changes in systemic hemodynamics, hepatosplanchnic circulation, and oxygen delivery were measured. Furthermore, the variable changes in the concentrations of nitrite and nitrate (NOx), anandamide, and BH4 were measured. To access the effects of surgery, anesthesia, and fluid management on BH4, an experiment without LPS infusion was performed in two other animals.

Results

Mean arterial pressure and cardiac index started to decrease at 60 min after LPS infusion. However, systemic vascular resistance remained unchanged. Total hepatic blood flow and hepatic oxygen delivery also decreased significantly. NOx and anandamide did not change during LPS infusion. BH4 values did not change without LPS infusion. However, BH4 values increased significantly in the arterial, portal, and hepatic circulation during LPS infusion, especially in the hepatic vein (from 136.8 ± 27.5 to 281.3 ± 123.2 mol/ml; P < 0.01).

Conclusion

Our data suggest that the BH4 values were significantly increased in several organs, especially in the liver during endotoxic shock. Impaired cardiac output and decreased blood pressure appeared in the early phase of porcine endotoxemia. Longer-term observation of these parameters after LPS treatment should be performed as the next step in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993;328:1471–1477.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar A, Haery C, Paladugu B, Kumar A, Symeoneides S, Taiberg L, Osman J, Trenholme G, Opal SM, Goldfarb R, Parrillo JE. The duration of hypotension before the initiation of antibiotic treatment is a critical determinant of survival in a murine model of Escherichia coli septic shock: association with serum lactate and inflammatory cytokine levels. J Infect Dis. 2006;193:251–258.

    Article  PubMed  CAS  Google Scholar 

  3. Trzeciak S, Dellinger RP, Abate NL, Cowan RM, Stauss M, Kilgannon JH, Zanotti S, Parrillo JE. Translating research to clinical practice: a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest. 2006;129:225–232.

    Article  PubMed  Google Scholar 

  4. Dal Nogare AR. Spetic shock. Am J Med Sci. 1991;302:50–65.

    Article  Google Scholar 

  5. Natanson C, Hoffman WD, Suffredini AF, Eichacker PQ, Danner RL. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med. 1994;120:771–783.

    PubMed  CAS  Google Scholar 

  6. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207–214.

    Article  PubMed  CAS  Google Scholar 

  7. Thiemermann C. The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol. 1994;28:45–79.

    Article  PubMed  CAS  Google Scholar 

  8. Rees DD, Cellek S, Palmer RM, Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun. 1990;173:541–547.

    Article  PubMed  CAS  Google Scholar 

  9. Szabó C, Mitchell JA, Thiemermann C, Vane JR. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol. 1993;108:786–792.

    PubMed  Google Scholar 

  10. Gómez-Jiménez J, Salgado A, Mourelle M, Martín MC, Segura RM, Peracaula R, Moncada S. L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med. 1995;23:253–258.

    Article  PubMed  Google Scholar 

  11. Varga K, Wagner JA, Bridgen DT, Kunos G. Platelet-and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 1998;12:1035–1044.

    PubMed  CAS  Google Scholar 

  12. Randall MD, Alexander SP, Bennett T, Boyd EA, Fry JR, Gardiner SM, Kemp PA, McCulloch AI, Kendall DA. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun. 1996;229:114–120.

    Article  PubMed  CAS  Google Scholar 

  13. Högestätt ED, Zygmunt PM. Cardiovascular pharmacology of anandamide. Prostaglandins Leukot Essent Fatty Acids. 2002;66:343–351.

    Article  PubMed  CAS  Google Scholar 

  14. Liu J, Wang L, Harvey-White J, Osei-Hyiaman D, Razdan R, Gong Q, Chan AC, Zhou Z, Huang BX, Kim HY, Kunos G. A biosynthetic pathway for anandamide. Proc Natl Acad Sci U S A. 2006;103:13 345–13 350.

    CAS  Google Scholar 

  15. Pacher P, Bátkai S, Kunos G. Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J Physiol. 2004;558:647–657.

    Article  PubMed  CAS  Google Scholar 

  16. Gross SS, Levi R. Tetrahydrobiopterin synthesis. An absolute requirement for cytokine-induced nitric oxide generation by vascular smooth muscle. J Biol Chem. 1992;267:25 722–25 729.

    CAS  Google Scholar 

  17. Hattori Y, Gross SS. GTP cyclohydrolase I mRNA is induced by LPS in vascular smooth muscle: characterization, sequence and relationship to nitric oxide synthase. Biochem Biophys Res Commun. 1993;195:435–441.

    Article  PubMed  CAS  Google Scholar 

  18. Hoshiai K, Hattan N, Fukuyama N, Tadaki F, Hida M, Saito A, Nakanishi N, Hattori Y, Nakazawa H. Increased plasma tetrahydrobiopterin in septic shock is a possible therapeutic target. Pathophysiology. 2001;7:275–281.

    Article  PubMed  CAS  Google Scholar 

  19. Schaffner A, Blau N, Schneemann M, Steurer J, Edgell CJ, Schoedon G. Tetrahydrobiopterin as another EDRF in man. Biochem Biophys Res Commun. 1994;205:516–523.

    Article  PubMed  CAS  Google Scholar 

  20. Walter R, Schaffner A, Blau N, Kierat L, Schoedon G. Tetrahydrobiopterin is a secretory product of murine vascular endothelial cells. Biochem Biophys Res Commun. 1994;203:1522–1526.

    Article  PubMed  CAS  Google Scholar 

  21. Koga D, Santa T, Fukushima T, Homma H, Imai K. Liquid chromatographic-atmospheric pressure chemical ionization mass spectrometric determination of anandamide and its analogs in rat brain and peripheral tissues. J Chromatogr B Biomed Sci Appl. 1997;690:7–13.

    Article  PubMed  CAS  Google Scholar 

  22. Fukushima T, Nixon JC. Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem. 1980;102:176–188.

    Article  PubMed  CAS  Google Scholar 

  23. Herity NA, Allen JD, Silke B, Adgey AA. Inhaled nitric oxide in combination with volume resuscitation refines a porcine model of endotoxic shock. Ir J Med Sci. 2001;170:172–175.

    Article  PubMed  CAS  Google Scholar 

  24. Saetre T, Hoiby EA, Aspelin T, Lermark G, Lyberg T. Acute serogroup A streptococcal shock: a porcine model. J Infect Dis. 2000;182:133–141.

    Article  PubMed  CAS  Google Scholar 

  25. Albertini M, Lafortuna CL, Clement MG, Mazzola S, Radice S, Hussain SN. Effect of NO synthase inhibition on cardiovascular and pulmonary dysfunction in a porcine short-term model of endotoxic shock. Prostaglandins Leukot Essent Fatty Acids 2002;67:365–372.

    Article  PubMed  CAS  Google Scholar 

  26. Assadi A, Desebbe O, Kaminski C, Rimmelé T, Bénatir F, Goudable J, Chassard D, Allaouchiche B. Effects of sodium nitroprusside on splanchnic microcirculation in a resuscitated porcine model of septic shock. Br J Anaesth. 2008;100:55–65.

    Article  PubMed  CAS  Google Scholar 

  27. Saetre T, Smiseth OA, Scholz T, Carlsen H, Nordsletten L, Fahlstrøm E, Aasen AO. Nitric oxide synthase inhibition reduces venous return in porcine endotoxemia. Am J Physiol. 1996;271:H1325–H1332.

    PubMed  CAS  Google Scholar 

  28. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993;328:1471–1477.

    Article  PubMed  CAS  Google Scholar 

  29. Vassilev D, Hauser B, Bracht H, Iványi Z, Schoaff M, Asfar P, Vogt J, Wachter U, Schelzig H, Georgieff M, Brückner UB, Radermacher P, Fröba G. Systemic, pulmonary, and hepatosplanchnic effects of N-acetylcysteine during long-term porcine endotoxemia. Crit Care Med. 2004;32:525–532.

    Article  PubMed  CAS  Google Scholar 

  30. Siegemund M, van Bommel J, Schwarte LA, Studer W, Girard T, Marsch S, Radermacher P, Ince C. Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med. 2005;31:985–992.

    Article  PubMed  Google Scholar 

  31. Nagata E, Kakihana Y, Tobo K, Isowaki S, Kanmura Y. The effects of olprinone (a phosphodiesterase III inhibitor) on hepatic vascular bed in a porcine model of endotoxemia. Anesth Analg. 2001;92:676–680.

    Article  PubMed  CAS  Google Scholar 

  32. Siore AM, Parker RE, Stecenko AA, Cuppels C, McKean M, Christman BW, Cruz-Gervis R, Brigham KL. Endotoxin-induced acute lung injury requires interaction with the liver. Am J Physiol Lung Cell Mol Physiol. 2005;289:L769–L776.

    Article  PubMed  CAS  Google Scholar 

  33. Shimada H, Hasegawa N, Koh H, Tasaka S, Shimizu M, Yamada W, Nishimura T, Amakawa K, Kohno M, Sawafuji M, Nakamura K, Fujishima S, Yamaguchi K, Ishizaka A. Effects of initial passage of endotoxin through the liver on the extent of acute lung injury in a rat model. Shock. 2006;26:311–315.

    Article  PubMed  CAS  Google Scholar 

  34. van Amsterdam JG, van den Berg C, Zuidema J, te Biesebeek JD, Rokos H. Effect of septicaemia on the plasma levels of biopterin and nitric oxide metabolites in rats and rabbits. Biochem Pharmacol. 1996;52:1447–1451.

    Article  PubMed  Google Scholar 

  35. Schoedon G, Schneemann M, Walter R, Blau N, Hofer S, Schaffner A. Nitric oxide and infection: another view. Clin Infect Dis. 1995;21:S152–S157.

    PubMed  CAS  Google Scholar 

  36. Luss H, Watkins SC, Freeswick PD, Imro AK, Nussler AK, Billiar TR, Simmons RL, del Nido PJ, McGowan FX Jr. Characterization of inducible nitric oxide synthase expression in endotoxemic rat cardiac myocytes in vivo and following cytokine exposure in vitro. J Mol Cell Cardiol. 1995;27:2015–2029.

    Article  PubMed  CAS  Google Scholar 

  37. Hattori Y, Nakanishi N, Kasai K, Murakami Y, Shimoda S. Tetrahydrobiopterin and GTP cyclohydrolase I in a rat model of endotoxic shock: relation to nitric oxide synthesis. Exp Physiol. 1996;81:665–671.

    PubMed  CAS  Google Scholar 

  38. Duch DS, Bowers SW, Woolf JH, Nichol CA. Biopterin cofactor biosynthesis: GTP cyclohydrolase, neopterin and biopterin in tissues and body fluids of mammalian species. Life Sci. 1984;35:1895–1901.

    Article  PubMed  CAS  Google Scholar 

  39. Schmidt TS, Alp NJ. Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci. 2007;113:47–63.

    PubMed  CAS  Google Scholar 

  40. Rosenkranz-Weiss P, Sessa WC, Milstien S, Kaufman S, Watson CA, Pober JS. Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest. 1994;93:2236–2243.

    Article  PubMed  CAS  Google Scholar 

  41. Stefano GB, Liu Y, Goligorsky MS. Cannabinoid receptors are coupled to nitric oxide release in invertebrate immunocytes, microglia, and human monocytes. J Biol Chem. 1996;271:19 238–19 242.

    CAS  Google Scholar 

  42. Fimiani C, Mattocks D, Cavani F, Salzet M, Deutsch DG, Pryor S, Bilfinger TV, Stefano GB. Morphine and anandamide stimulate intracellular calcium transients in human arterial endothelial cells: coupling to nitric oxide release. Cell Signal. 1999;11:189–193.

    Article  PubMed  CAS  Google Scholar 

  43. Mutschler DK, Eriksson MB, Wikström BG, Lind L, Larsson A, Bergren-Kiiski R, Lagrange A, Nordgren A, Basu S. Microdialysis-evaluated myocardial cyclooxygenase-mediated inflammation and early circulatory depression in porcine endotoxemia. Crit Care Med. 2003;31:1780–1785.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hashiguchi, T., Kakihana, Y., Isowaki, S. et al. Systematic evaluation of nitric oxide, tetrahydrobiopterin, and anandamide levels in a porcine model of endotoxemia. J Anesth 22, 213–220 (2008). https://doi.org/10.1007/s00540-008-0610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0610-x

Key words

Navigation