Skip to main content

Advertisement

Log in

MicroRNA-223-3p levels in serum-derived extracellular vesicles predict regression of M2BPGi-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

We retrospectively investigated microRNA (miRNA) levels in serum-derived extracellular vesicles (EVs) as predictive indicators for regression of liver fibrosis, after achievement of a sustained virological response (SVR) by direct-acting antiviral (DAA) therapy for chronic hepatitis C (CHC).

Methods

The study subjects were recruited from a historical cohort of 108 CHC patients whose pretreatment serum Mac-2-binding protein glycosylation isomer (M2BPGi) levels were ≥ 2.0 cut-off index (COI). We classified patients with M2BPGi levels < 1.76 and ≥ 1.76 COI at 2 years after the end of treatment (EOT) into the regression and non-regression groups, respectively. Eleven of the patients were assigned to the discovery set, and we comprehensively investigated the miRNAs contained in serum-derived EVs at 24 weeks after the EOT (EOT24W), using RNA sequencing. The remaining 97 patients were assigned to the validation set, and reproducibility was verified by quantitative real-time PCR.

Results

Through analysis of the discovery and validation sets, we identified miR-223-3p and miR-1290 as candidate predictors. Subsequently, we analyzed various clinical data, including these candidate miRNAs. Multivariate analyses revealed that the levels of miR-223-3p at EOT24W were significantly associated with regression of M2BPGi-based liver fibrosis (Odds ratio: 1.380; P = 0.024). Consistent results were obtained, even when the serum M2BPGi levels were aligned by propensity score matching and in patients with advanced M2BPGi-based liver fibrosis (pretreatment M2BPGi levels ≥ 3.3 COI).

Conclusions

The miR-223-3p level in serum-derived EVs at EOT24W is a feasible predictor of regression of M2BPGi-based liver fibrosis after achievement of an SVR by DAA therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

M2BPGi:

Binding protein glycosylation isomer

CHC:

Chronic hepatitis C

COI:

Cut-off index

DAA:

Direct antiviral agent

EV:

Extracellular vesicle

SVR:

Sustained virological response

EOT:

End of treatment

EOT24W:

24 Weeks after the EOT

MiRNA:

MicroRNA

ALBI:

Albumin–bilirubin

FIB-4:

Fibrosis-4

T-Bil:

Total bilirubin

References

  1. Takehara T, Sakamoto N, Nishiguchi S, et al. Efficacy and safety of sofosbuvir-velpatasvir with or without ribavirin in HCV-infected Japanese patients with decompensated cirrhosis: an open-label phase 3 trial. J Gastroenterol. 2019;54:87–95.

    Article  CAS  PubMed  Google Scholar 

  2. Suda G, Ogawa K, Morikawa K, et al. Treatment of hepatitis C in special populations. J Gastroenterol. 2018;53:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carmona I, Cordero P, Ampuero J, et al. Role of assessing liver fibrosis in management of chronic hepatitis C virus infection. Clin Microbiol Infect. 2016;22:839–45.

    Article  CAS  PubMed  Google Scholar 

  4. Tahata Y, Hikita H, Mochida S, et al. Liver-related events after direct-acting antiviral therapy in patients with hepatitis C virus-associated cirrhosis. J Gastroenterol. 2022;57:120–32.

    Article  CAS  PubMed  Google Scholar 

  5. Tahata Y, Hikita H, Mochida S, et al. Posttreatment liver function, but not baseline liver function stratifies patient survival after direct-acting antiviral treatment in decompensated cirrhosis with hepatitis C virus. J Gastroenterol. 2023. https://doi.org/10.1007/s00535-023-02039-x.

    Article  PubMed  PubMed Central  Google Scholar 

  6. El-Sherif O, Jiang ZG, Tapper EB, et al. Baseline factors associated with improvements in decompensated cirrhosis after direct-acting antiviral therapy for hepatitis C virus infection. Gastroenterology. 2018;154:2111-21.e8.

    Article  CAS  PubMed  Google Scholar 

  7. Seko Y, Moriguchi M, Hara T, et al. Presence of varices in patients after hepatitis C virus eradication predicts deterioration in the FIB-4 index. Hepatol Res. 2019;49:473–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mauro E, Crespo G, Montironi C, et al. Portal pressure and liver stiffness measurements in the prediction of fibrosis regression after sustained virological response in recurrent hepatitis C. Hepatology. 2018;67:1683–94.

    Article  PubMed  Google Scholar 

  9. Suzuki T, Matsuura K, Nagura Y, et al. Serum angiopoietin-2 levels predict regression of Mac-2 binding protein glycosylation isomer-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. Hepatol Res. 2022;52:919–27.

    Article  CAS  PubMed  Google Scholar 

  10. Nagura Y, Suzuki T, Matsuura K, et al. Serum inducible protein 10 kDa/C-X-C motif chemokine 10 levels predict regression of M2BPGi-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. Hepatol Res. 2024;54:32–42.

    Article  CAS  PubMed  Google Scholar 

  11. Gu J, Xu H, Chen Y, et al. MiR-223 as a regulator and therapeutic target in liver diseases. Front Immunol. 2022;13: 860661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hildonen S, Skarpen E, Halvorsen TG, et al. Isolation and mass spectrometry analysis of urinary extraexosomal proteins. Sci Rep. 2016;6:36331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu H, Liao C, Zuo P, et al. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal Chem. 2018;90:13451–8.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Kim MS, Jia B, et al. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature. 2017;548:52–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tadokoro T, Morishita A, Masaki T. Diagnosis and therapeutic management of liver fibrosis by microRNA. Int J Mol Sci. 2021;22:8139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsuura K, De Giorgi V, Schechterly C, et al. Circulating let-7 levels in plasma and extracellular vesicles correlate with hepatic fibrosis progression in chronic hepatitis C. Hepatology. 2016;64:732–45.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuura K, Aizawa N, Enomoto H, et al. Circulating let-7 levels in serum correlate with the severity of hepatic fibrosis in chronic hepatitis C. Open Forum Infect Dis. 2018;5:ofy268.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Babuta M, Szabo G. Extracellular vesicles in inflammation: focus on the microRNA cargo of EVs in modulation of liver diseases. J Leukoc Biol. 2022;111:75–92.

    Article  CAS  PubMed  Google Scholar 

  19. Yukawa H, Yamazaki S, Aoki K, et al. Co-continuous structural effect of size-controlled macro-porous glass membrane on extracellular vesicle collection for the analysis of miRNA. Sci Rep. 2021;11:8672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sasaki R, Yamasaki K, Abiru S, et al. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein values predict the development of hepatocellular carcinoma among patients with chronic hepatitis c after sustained virological response. PLoS One. 2015;10: e0129053.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yamasaki K, Tateyama M, Abiru S, et al. Elevated serum levels of Wisteria floribunda agglutinin-positive human Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatology. 2014;60:1563–70.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao G, Yang J, Yan L. Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis-4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: a systemic review and meta-analysis. Hepatology. 2015;61:292–302.

    Article  PubMed  Google Scholar 

  23. Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33:550–8.

    Article  PubMed  Google Scholar 

  24. Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777–82.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  26. Setiawan VW, Rosen HR. Stratification of residual risk of HCC following HCV clearance with direct-acting antivirals in patients with advanced fibrosis and cirrhosis. Hepatology. 2020;72:1897–9.

    Article  PubMed  Google Scholar 

  27. Lemoinne S, Thabut D, Housset C, et al. The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol. 2014;11:350–61.

    Article  CAS  PubMed  Google Scholar 

  28. Schwarzenbach H, Nishida N, Calin GA, et al. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 2014;11:145–56.

    Article  CAS  PubMed  Google Scholar 

  29. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  30. Arrese M, Eguchi A, Feldstein AE. Circulating microRNAs: emerging biomarkers of liver disease. Semin Liver Dis. 2015;35:43–54.

    Article  CAS  PubMed  Google Scholar 

  31. Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madeo M, Colbert PL, Vermeer DW, et al. Cancer exosomes induce tumor innervation. Nat Commun. 2018;9:4284.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS Nano. 2017;11:10712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi L, Kuhnell D, Borra VJ, et al. Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device. Lab Chip. 2019;19:3726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo X, An M, Cuneo KC, et al. High-performance chemical isotope labeling liquid chromatography mass spectrometry for exosome metabolomics. Anal Chem. 2018;90:8314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida M, Yukawa H, Hayashi K, et al. Clinical impact of bile-derived exosomal microRNAs as novel diagnostic and prognostic biomarkers for biliary tract cancers. Cancer Sci. 2023;114:295–305.

    Article  CAS  PubMed  Google Scholar 

  37. Choi DW, Cho KA, Kim J, et al. Extracellular vesicles from tonsil-derived mesenchymal stromal cells show anti-tumor effect via miR-199a-3p. Int J Mol Med. 2021. https://doi.org/10.3892/ijmm.2021.5054.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Murakami Y, Toyoda H, Tanahashi T, et al. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS One. 2012;7: e48366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res. 2012;93:633–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3: e3694.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ye D, Zhang T, Lou G, et al. Role of miR-223 in the pathophysiology of liver diseases. Exp Mol Med. 2018;50:1–12.

    Article  CAS  PubMed  Google Scholar 

  42. Coll M, El Taghdouini A, Perea L, et al. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci Rep. 2015;5:11549.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Calvente CJ, Tameda M, Johnson CD, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Investig. 2019;129:4091–109.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang X, Seo W, Park SH, et al. MicroRNA-223 restricts liver fibrosis by inhibiting the TAZ-IHH-GLI2 and PDGF signaling pathways via the crosstalk of multiple liver cell types. Int J Biol Sci. 2021;17:1153–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ariyachet C, Chuaypen N, Kaewsapsak P, et al. MicroRNA-223 suppresses human hepatic stellate cell activation partly via regulating the actin cytoskeleton and alleviates fibrosis in organoid models of liver injury. Int J Mol Sci. 2022;23:9380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Oksuz Z, Serin MS, Kaplan E, et al. Serum microRNAs; miR-30c-5p, miR-223-3p, miR-302c-3p and miR-17-5p could be used as novel non-invasive biomarkers for HCV-positive cirrhosis and hepatocellular carcinoma. Mol Biol Rep. 2015;42:713–20.

    Article  CAS  PubMed  Google Scholar 

  47. Bao S, Zheng J, Li N, et al. Serum microRNA levels as a noninvasive diagnostic biomarker for the early diagnosis of hepatitis B virus-related liver fibrosis. Gut Liver. 2017;11:860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abe M, Miyake T, Kuno A, et al. Association between Wisteria floribunda agglutinin-positive Mac-2 binding protein and the fibrosis stage of non-alcoholic fatty liver disease. J Gastroenterol. 2015;50:776–84.

    Article  CAS  PubMed  Google Scholar 

  49. Zou X, Zhu MY, Yu DM, et al. Serum WFA(+) -M2BP levels for evaluation of early stages of liver fibrosis in patients with chronic hepatitis B virus infection. Liver Int. 2017;37:35–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sachiko Sakata for keeping samples

Funding

This research was supported by the Japan Agency for Medical Research and Development (AMED) (Grant number JP24fk0210113) and the Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant numbers: JP17K09435 and JP20K08314 to Kentaro Matsuura).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Takanori Suzuki, and Kentaro Matsuura; drafting of manuscript: Takanori Suzuki, and Kentaro Matsuura; acquisition, analysis and interpretation of data: Takanori Suzuki, Kentaro Matsuura, Yoshihito Nagura, Shintaro Ogawa, Hayato Kawamura, Kei Fujiwara, Katsuya Nagaoka, Etsuko Iio, Takehisa Watanabe, Hiromi Kataoka, and Yasuhito Tanaka; critical revision of the manuscript: Takanori Suzuki, and Kentaro Matsuura; study supervision: Hiromi Kataoka and Yasuhito Tanaka.

Corresponding author

Correspondence to Kentaro Matsuura.

Ethics declarations

Conflict of interest

Yasuhito Tanaka: Research funding from Gilead Sciences, Fujirebio, Inc., AbbVie GK, Board of Trustees of the Leland Stanford Junior University. Lecture fees from Gilead Sciences, Fujirebio, Inc., AbbVie GK. The editorial board member of Hepatology Research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Matsuura, K., Nagura, Y. et al. MicroRNA-223-3p levels in serum-derived extracellular vesicles predict regression of M2BPGi-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. J Gastroenterol (2024). https://doi.org/10.1007/s00535-024-02115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00535-024-02115-w

Keywords

Navigation