Skip to main content
Log in

Severe induction of aberrant DNA methylation by nodular gastritis in adults

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Nodular gastritis (NG) is characterized by marked antral lymphoid follicle formation, and is a strong risk factor for diffuse-type gastric cancer in adults. However, it is unknown whether aberrant DNA methylation, which is induced by atrophic gastritis (AG) and is a risk for gastric cancer, is induced by NG. Here, we analyzed methylation induction by NG.

Methods

Gastric mucosal samples were obtained from non-cancerous antral tissues of 16 NG and 20 AG patients with gastric cancer and 5 NG and 6 AG patients without, all age- and gender-matched. Genome-wide methylation analysis and expression analysis were conducted by a BeadChip array and RNA-sequencing, respectively.

Results

Clustering analysis of non-cancerous antral tissues of NG and AG patients with gastric cancer was conducted using methylation levels of 585 promoter CpG islands (CGIs) of methylation-resistant genes, and a large fraction of NG samples formed a cluster with strong methylation induction. Promoter CGIs of CDH1 and DAPK1 tumor-suppressor genes were more methylated in NG than in AG. Notably, methylation levels of these genes were also higher in the antrum of NG patients without cancer. Genes related to lymphoid follicle formation, such as CXCL13/CXCR5 and CXCL12/CXCR4, had higher expression in NG, and genes involved in DNA demethylation TET2 and IDH1, had only half the expression in NG.

Conclusions

Severe aberrant methylation, involving multiple tumor-suppressor genes, was induced in the gastric antrum and body of patients with NG, in accordance with their high gastric cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NG:

Nodular gastritis

H. pylori :

Helicobacter pylori

AG:

Atrophic gastritis

CGIs:

CpG islands

DNMTs:

DNA methyltransferases

NO:

Nitric oxide

FFPE:

Formalin-fixed paraffin-embedded

FF:

Fresh-frozen

NBI:

Narrow Band Imaging

qPCR:

Quantitative PCR

HSD:

Highest standard deviation

References

  1. Ikuse T, Ohtsuka Y, Obayashi N, et al. Host response genes associated with nodular gastritis in Helicobacter pylori infection. Pediatr Int. 2018;60:446–54. https://doi.org/10.1111/ped.13527.

    Article  CAS  PubMed  Google Scholar 

  2. Nishikawa I, Kato J, Terasoma S, et al. Nodular gastritis in association with gastric cancer development before and after Helicobacter pylori eradication. JGH Open. 2018;2:80–6. https://doi.org/10.1002/jgh3.12049.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Okamoto K, Kodama M, Mizukami K, et al. Immunohistochemical differences in gastric mucosal damage between nodular and non-nodular gastritis caused by Helicobacter pylori infection. J Clin Biochem Nutr. 2021;69:216–21. https://doi.org/10.3164/jcbn.20-179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Toyoshima O, Nishizawa T, Koike K. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis. World J Gastroenterol. 2020;26:466–77. https://doi.org/10.3748/wjg.v26.i5.466.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shiotani A, Kamada T, Kumamoto M, et al. Nodular gastritis in Japanese young adults: endoscopic and histological observations. J Gastroenterol. 2007;42:610–5. https://doi.org/10.1007/s00535-007-2073-5.

    Article  PubMed  Google Scholar 

  6. Asada K, Nakajima T, Shimazu T, et al. Demonstration of the usefulness of epigenetic cancer risk prediction by a multicentre prospective cohort study. Gut. 2015;64:388–96. https://doi.org/10.1136/gutjnl-2014-307094.

    Article  CAS  PubMed  Google Scholar 

  7. Maeda M, Nakajima T, Oda I, et al. High impact of methylation accumulation on metachronous gastric cancer: 5-year follow-up of a multicentre prospective cohort study. Gut. 2017;66:1721–3. https://doi.org/10.1136/gutjnl-2016-313387.

    Article  PubMed  Google Scholar 

  8. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–95. https://doi.org/10.1158/1078-0432.Ccr-05-2096.

    Article  CAS  PubMed  Google Scholar 

  9. Vedeld HM, Goel A, Lind GE. Epigenetic biomarkers in gastrointestinal cancers: the current state and clinical perspectives. Semin Cancer Biol. 2018;51:36–49. https://doi.org/10.1016/j.semcancer.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  10. Schneider BG, Mera R, Piazuelo MB, et al. DNA methylation predicts progression of human gastric lesions. Cancer Epidemiol Biomark Prev. 2015;24:1607–13. https://doi.org/10.1158/1055-9965.Epi-15-0388.

    Article  CAS  Google Scholar 

  11. Yamashita S, Kishino T, Takahashi T, et al. Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci U S A. 2018;115:1328–33. https://doi.org/10.1073/pnas.1717340115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee YC, Chiang TH, Chou CK, et al. Association between Helicobacter pylori eradication and gastric cancer incidence: a systematic review and meta-analysis. Gastroenterology. 2016;150:1113-24.e5. https://doi.org/10.1053/j.gastro.2016.01.028.

    Article  PubMed  Google Scholar 

  13. Usui G, Matsusaka K, Mano Y, et al. DNA methylation and genetic aberrations in gastric cancer. Digestion. 2021;102:25–32. https://doi.org/10.1159/000511243.

    Article  CAS  PubMed  Google Scholar 

  14. Kamada T, Tanaka A, Yamanaka Y, et al. Nodular gastritis with Helicobacter pylori infection is strongly associated with diffuse-type gastric cancer in young patients. Dig Endosc. 2007;19:180–4. https://doi.org/10.1111/j.1443-1661.2007.00750.x.

    Article  Google Scholar 

  15. Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002;31:141–9. https://doi.org/10.1038/ng892.

    Article  CAS  PubMed  Google Scholar 

  16. Takeshima H, Niwa T, Yamashita S, et al. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 2020;130:5370–9. https://doi.org/10.1172/jci124070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takeuchi C, Sato J, Yamashita S, et al. Autoimmune gastritis induces aberrant DNA methylation reflecting its carcinogenic potential. J Gastroenterol. 2022. https://doi.org/10.1007/s00535-021-01848-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247–77. https://doi.org/10.1146/annurev-immunol-051116-052415.

    Article  CAS  PubMed  Google Scholar 

  19. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14:101–12. https://doi.org/10.1007/s10120-011-0041-5.

  20. Kaneko S, Yoshimura T. Time trend analysis of gastric cancer incidence in Japan by histological types, 1975–1989. Br J Cancer. 2001;84:400–5. https://doi.org/10.1054/bjoc.2000.1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ueda S, Yamashita S, Watanabe SI, et al. Influence of degree of DNA degradation in formalin-fixed and paraffin-embedded tissue samples on accuracy of genome-wide DNA methylation analysis. Epigenomics. 2021;13:565–76. https://doi.org/10.2217/epi-2020-0431.

    Article  CAS  PubMed  Google Scholar 

  22. Iida N, Okuda Y, Ogasawara O, et al. MACON: a web tool for computing DNA methylation data obtained by the illumina infinium human DNA methylation BeadArray. Epigenomics. 2018;10:249–58. https://doi.org/10.2217/epi-2017-0093.

    Article  CAS  PubMed  Google Scholar 

  23. Yamashita S, Nanjo S, Rehnberg E, et al. Distinct DNA methylation targets by aging and chronic inflammation: a pilot study using gastric mucosa infected with Helicobacter pylori. Clin Epigenetics. 2019;11:191. https://doi.org/10.1186/s13148-019-0789-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012;7: e41361. https://doi.org/10.1371/journal.pone.0041361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article  CAS  PubMed  Google Scholar 

  26. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323.

    Article  CAS  Google Scholar 

  27. Takeshima H, Yamashita S, Shimazu T, et al. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res. 2009;19:1974–82. https://doi.org/10.1101/gr.093310.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8. https://doi.org/10.1038/bmt.2012.244.

    Article  CAS  PubMed  Google Scholar 

  29. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. https://doi.org/10.1038/nprot.2008.211.

    Article  CAS  PubMed  Google Scholar 

  30. da Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13. https://doi.org/10.1093/nar/gkn923.

    Article  CAS  PubMed  Google Scholar 

  31. Song JZ, Stirzaker C, Harrison J, et al. Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene. 2002;21:1048–61. https://doi.org/10.1038/sj.onc.1205153.

    Article  CAS  PubMed  Google Scholar 

  32. De Smet C, Loriot A, Boon T. Promoter-dependent mechanism leading to selective hypomethylation within the 5’ region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 2004;24:4781–90. https://doi.org/10.1128/mcb.24.11.4781-4790.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koide T, Koyanagi-Aoi M, Uehara K, et al. CDX2-induced intestinal metaplasia in human gastric organoids derived from induced pluripotent stem cells. iScience. 2022;25: 104314. https://doi.org/10.1016/j.isci.2022.104314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang B, Wang M, Ao D, et al. CXCL13-CXCR5 axis: regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer. 2022;1877: 188799. https://doi.org/10.1016/j.bbcan.2022.188799.

    Article  CAS  PubMed  Google Scholar 

  35. Ferretti E, Ponzoni M, Doglioni C, et al. IL-17 superfamily cytokines modulate normal germinal center B cell migration. J Leukoc Biol. 2016;100:913–8. https://doi.org/10.1189/jlb.1VMR0216-096RR.

    Article  CAS  PubMed  Google Scholar 

  36. Hong W, Yang B, He Q, et al. New insights of CCR7 signaling in dendritic cell migration and inflammatory diseases. Front Pharmacol. 2022;13: 841687. https://doi.org/10.3389/fphar.2022.841687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamamoto E, Suzuki H, Takamaru H, et al. Role of DNA methylation in the development of diffuse-type gastric cancer. Digestion. 2011;83:241–9. https://doi.org/10.1159/000320453.

    Article  CAS  PubMed  Google Scholar 

  38. Yuan W, Chen J, Shu Y, et al. Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: a systematic review and meta-analysis. PLoS ONE. 2017;12: e0184959. https://doi.org/10.1371/journal.pone.0184959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grady WM, Willis J, Guilford PJ, et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000;26:16–7. https://doi.org/10.1038/79120.

    Article  CAS  PubMed  Google Scholar 

  40. Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–5. https://doi.org/10.1038/32918.

    Article  CAS  PubMed  Google Scholar 

  41. Shin SH, Park SY, Ko JS, et al. Aberrant CpG island hypermethylation in pediatric gastric mucosa in association with Helicobacter pylori infection. Arch Pathol Lab Med. 2011;135:759–65. https://doi.org/10.5858/2010-0140-oa.1.

    Article  CAS  PubMed  Google Scholar 

  42. Choi E, Roland JT, Barlow BJ, et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63:1711–20. https://doi.org/10.1136/gutjnl-2013-305964.

    Article  PubMed  Google Scholar 

  43. Kitamura S, Yasuda M, Muguruma N, et al. Prevalence and characteristics of nodular gastritis in Japanese elderly. J Gastroenterol Hepatol. 2013;28:1154–60. https://doi.org/10.1111/jgh.12180.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

TU is a recipient of grants supported by AMED under Grant Nos. JP23ck0106804 and JP20gm1310006. HT is a recipient of a grant supported by JSPS KAKENHI under Grant No. JP21K07928. NY is a recipient of a Research Grant of the Princess Takamatsu Cancer Research Fund (ID: 19-25138) and JSPS KAKENHI under Grant No. JP21H03178.

Author information

Authors and Affiliations

Authors

Contributions

AS, HT, and TU conceived and designed the study. AS, HT, and YO carried out experiments. AS, HT, SY, and AH conducted data analysis. CI, JK, CT, MF, YF, NY, TA, HK, TK, CS, and KK collected clinical samples and WN supervised the pathological diagnosis and sample processing. AS, HT, TI, and TU wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toshikazu Ushijima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6305 KB)

Supplementary file2 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, A., Takeshima, H., Yamashita, S. et al. Severe induction of aberrant DNA methylation by nodular gastritis in adults. J Gastroenterol (2024). https://doi.org/10.1007/s00535-024-02094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00535-024-02094-y

Keywords

Navigation