Skip to main content

Advertisement

Log in

CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation.

Methods

qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson’s trichrome, and Sirius Red staining were used to assess the pathological changes in mice’s liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR.

Results

CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7.

Conclusion

CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HSCs:

Hepatic stellate cells

GSH:

Glutathione

GPX4:

Glutathione peroxidase 4

ROS:

Reactive oxygen species

PARK7:

Parkinson disease 7

STUB1:

STIP1 homology and U-Box containing protein 1

circRNAs:

Circular RNAs

FBS:

Fetal bovine serum

shRNA:

Short hairpin RNA

act-D:

Actinomycin D

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

MDA:

Malondialdehyde

RIP:

RNA immunoprecipitation

CHX:

Cycloheximide

Co-IP:

Co-immunoprecipitation

CCl4 :

Carbon tetrachloride

H&E:

Hematoxylin and eosin

IHC:

Immunohistochemistry

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

HYP:

Hydroxyproline

qRT-PCR:

Quantitative real-time PCR

PVDF:

Polyvinylidene difluoride

HO-1:

Heme oxygenase-1

IRP2:

Iron-regulatory protein 2

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.

    Article  PubMed  Google Scholar 

  3. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  Google Scholar 

  4. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Yao Z, Wang L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy. 2018;14:2083–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinat C, Shendelman S, Jonason A, et al. Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism. PLoS Biol. 2004;2:e327.

    PubMed  PubMed Central  Google Scholar 

  9. Cao J, Chen X, Jiang L, et al. DJ-1 suppresses ferroptosis through preserving the activity of S-adenosyl homocysteine hydrolase. Nat Commun. 2020;11:1251.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen L, Luo M, Sun X, et al. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches. Cell Death Dis. 2016;7:e2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Y, Jin C, Shen M, et al. Iron regulatory protein 2 is required for artemether -mediated anti-hepatic fibrosis through ferroptosis pathway. Free Radic Biol Med. 2020;160:845–59.

    Article  CAS  PubMed  Google Scholar 

  12. Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  CAS  PubMed  Google Scholar 

  13. Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176(4):869-81 e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Dong R, Guo Y, et al. CircMTO1 inhibits liver fibrosis via regulation of miR-17-5p and Smad7. J Cell Mol Med. 2019;23:5486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang YR, Hu S, Bu FT, et al. Circular RNA CREBBP suppresses hepatic fibrosis via targeting the hsa-miR-1291/LEFTY2 Axis. Front Pharmacol. 2021;12:741151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srikantan S, Gorospe M. HuR function in disease. Front Biosci (Landmark Ed). 2012;17:189–205.

    Article  CAS  PubMed  Google Scholar 

  17. Mederacke I, Dapito DH, Affo S, et al. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015;10:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang P, Huang Z, Peng Y, et al. Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair. Nat Commun. 2022;13:6502.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shrestha N, Chand L, Han MK, et al. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-beta1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food Chem Toxicol. 2016;93:129–37.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Lv X, Qu H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes. Hepatol Res. 2019;49:324–34.

    Article  PubMed  Google Scholar 

  21. Dong S, Chen QL, Song YN, et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci. 2016;41:561–72.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Liu T, Hu C, et al. Ferroptosis inducer erastin downregulates androgen receptor and its splice variants in castration-resistant prostate cancer. Oncol Rep. 2021. https://doi.org/10.3892/or.2021.7976.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim KM, Cho SS, Ki SH. Emerging roles of ferroptosis in liver pathophysiology. Arch Pharm Res. 2020;43:985–96.

    Article  CAS  PubMed  Google Scholar 

  24. Daher B, Parks SK, Durivault J, et al. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res. 2019;79:3877–90.

    Article  CAS  PubMed  Google Scholar 

  25. Bao Y, Pang Y, Tang S, et al. 12N-Substituted Matrinol Derivatives Inhibited the Expression of Fibrogenic Genes via Repressing Integrin/FAK/PI3K/Akt Pathway in Hepatic Stellate Cells. Molecules. 2019. https://doi.org/10.3390/molecules24203748.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Okholm TLH, Sathe S, Park SS, et al. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med. 2020;12:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding Q, Xie XL, Wang MM, et al. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis. Exp Mol Med. 2019;51:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dou SD, Zhang JN, Xie XL, et al. MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy. Open Med (Wars). 2021;16:1718–27.

    Article  CAS  PubMed  Google Scholar 

  29. Trautwein C, Friedman SL, Schuppan D, et al. Hepatic fibrosis: concept to treatment. J Hepatol. 2015;62:S15-24.

    Article  CAS  PubMed  Google Scholar 

  30. Ghafouri-Fard S, Taheri M, Hussen BM, et al. Function of circular RNAs in the pathogenesis of colorectal cancer. Biomed Pharmacother. 2021;140: 111721.

    Article  CAS  PubMed  Google Scholar 

  31. Rengganaten V, Huang CJ, Tsai PH, et al. Mapping a circular RNA-microRNA-mRNA-signaling regulatory axis that modulates stemness properties of cancer stem cell populations in colorectal cancer spheroid cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21217864.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li H, Zhao Y, Shen Q, et al. Multiple circRNAs regulated by QKI5 conjointly spongemiR-214-3p to antagonize bisphenol A-inducedspermatocyte toxicity. Acta Biochim Biophys Sin (Shanghai). 2022;54:1090–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ma L, Yang X, Wei R, et al. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis. 2018;9:718.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pan Q, Luo Y, Xia Q, et al. Ferroptosis and liver fibrosis. Int J Med Sci. 2021;18:3361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aldrovandi M, Conrad M. Ferroptosis: the Good, the Bad and the Ugly. Cell Res. 2020;30:1061–2.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Wang X, Wang Z, et al. Dihydroartemisinin alleviates hepatic fibrosis through inducing ferroptosis in hepatic stellate cells. BioFactors. 2021;47:801–18.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu Y, Zhang C, Huang M, et al. TRIM26 induces ferroptosis to inhibit hepatic stellate cell activation and mitigate liver fibrosis through mediating SLC7A11 ubiquitination. Front Cell Dev Biol. 2021;9:644901.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho SS, Yang JH, Lee JH, et al. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis. Free Radic Biol Med. 2022;193:620–37.

    Article  CAS  PubMed  Google Scholar 

  39. Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.

    Article  CAS  PubMed  Google Scholar 

  40. Huang A, Zheng H, Wu Z, et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li S, Song F, Lei X, et al. hsa_circ_0004018 suppresses the progression of liver fibrosis through regulating the hsa-miR-660-3p/TEP1 axis. Aging (Albany NY). 2020;12:11517–29.

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Wang Q, Wang X, et al. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 2020;6:72.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yiakouvaki A, Dimitriou M, Karakasiliotis I, et al. Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J Clin Invest. 2012;122:48–61.

    Article  CAS  PubMed  Google Scholar 

  44. Badawi A, Hehlgans S, Pfeilschifter J, et al. Silencing of the mRNA-binding protein HuR increases the sensitivity of colorectal cancer cells to ionizing radiation through upregulation of caspase-2. Cancer Lett. 2017;393:103–12.

    Article  CAS  PubMed  Google Scholar 

  45. Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang DE, Dai Y, Lin LW, et al. STUB1 suppresseses tumorigenesis and chemoresistance through antagonizing YAP1 signaling. Cancer Sci. 2019;110:3145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang S, Zhang X, Bie Y, et al. STUB1 regulates antiviral RNAi through inducing ubiquitination and degradation of Dicer and AGO2 in mammals. Virol Sin. 2022;37:569–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsubouchi K, Araya J, Minagawa S, et al. Azithromycin attenuates myofibroblast differentiation and lung fibrosis development through proteasomal degradation of NOX4. Autophagy. 2017;13:1420–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen SC, Liu CM, Hsieh PL, et al. E3 ligase carboxyl-terminus of Hsp70-interacting protein (CHIP) suppresses fibrotic properties in oral mucosa. J Formos Med Assoc. 2020;119:595–600.

    Article  CAS  PubMed  Google Scholar 

  50. Xin H, Xu X, Li L, et al. CHIP controls the sensitivity of transforming growth factor-beta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem. 2005;280:20842–50.

    Article  CAS  PubMed  Google Scholar 

  51. Seo J, Lee EW, Sung H, et al. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol. 2016;18:291–302.

    Article  CAS  PubMed  Google Scholar 

  52. Vavougios GD, Solenov EI, Hatzoglou C, et al. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma. Am J Physiol Lung Cell Mol Physiol. 2015;309:L677–86.

    Article  CAS  PubMed  Google Scholar 

  53. Yu Y, Sun X, Gu J, et al. Deficiency of DJ-1 ameliorates liver fibrosis through inhibition of hepatic ROS production and inflammation. Int J Biol Sci. 2016;12:1225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen S, Xia H, Sheng L. WTAP-mediated m6A modification on circCMTM3 inhibits hepatocellular carcinoma ferroptosis by recruiting IGF2BP1 to increase PARK7 stability. Dig Liver Dis. 2023;55:967–81.

    Article  CAS  PubMed  Google Scholar 

  55. Liao T, Xu X, Ye X, et al. DJ-1 upregulates the Nrf2/GPX4 signal pathway to inhibit trophoblast ferroptosis in the pathogenesis of preeclampsia. Sci Rep. 2022;12:2934.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schriever SC, Zimprich A, Pfuhlmann K, et al. Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience. 2017;357:241–54.

    Article  CAS  PubMed  Google Scholar 

  57. Xu M, Hang H, Huang M, et al. DJ-1 deficiency in hepatocytes improves liver ischemia-reperfusion injury by enhancing mitophagy. Cell Mol Gastroenterol Hepatol. 2021;12:567–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (No. 82170639), the National Natural Science Foundation of China Youth Fund (No. 82200671), and the Hunan Provincial Natural Science Foundation (No. 2022JJ70068, 2022JJ70070).

Author information

Authors and Affiliations

Authors

Contributions

JW: conceptualization; methodology; HZ: visualization; supervision; LC: validation; formal analysis; KF: investigation; resources; YY: data curation; writing–original draft; ZL: writing—review and editing; project administration; funding acquisition.

Corresponding author

Correspondence to Zhenguo Liu.

Ethics declarations

Conflict of interest

The authors declare that no competing financial interest exists.

Ethics approval

The Animal Care and Use Committee of Central South University’s Third Xiangya Hospital approved all mouse-related experiments.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, H., Chen, L. et al. CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation. J Gastroenterol 59, 229–249 (2024). https://doi.org/10.1007/s00535-023-02068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02068-6

Keywords

Navigation