Skip to main content

Advertisement

Log in

RTP4 silencing provokes tumor-intrinsic resistance to immune checkpoint blockade in colorectal cancer

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Recent advances in immune checkpoint blockade (ICB) have improved patient prognosis in mismatch repair-deficient and microsatellite instability-high colorectal cancer (dMMR/MSI-H CRC); however, PD-1 blockade has faced a challenge in early progressive disease. We aimed to understand the early event in ICB resistance using an in vivo model.

Methods

We subcutaneously transplanted the MC38 colon cancer cells into C57BL/6 mice, intraperitoneally injected anti-PD-1 antibody and then isolated ICB-resistant subclones from the recurrent tumors.

Results

Comparative gene expression analysis discovered seven genes significantly downregulated in the ICB-resistant cells. Tumorigenicity assay of the MC38 cells knocked out each of the seven candidate genes into C57BL/6 mice treated with anti-PD-1 antibody and bioinformatics analysis of the relationship between the expression of the seven candidate genes and the outcome of cancer patients receiving immunotherapy identified Rtp4, an interferon-stimulated gene and a chaperon protein of G protein-coupled receptors, as a gene involved in ICB resistance. Immunohistochemical analysis of transplanted tumor tissues demonstrated that anti-PD-1 antibody failed to recruit T lymphocytes in the Rtp4-KO MC38 cells. Mouse and human RTP4 expression could be silenced via histone H3 lysine 9 (H3K9) trimethylation, and public transcriptome data indicated the high expression level of RTP4 in most but not all of dMMR/MSI-H CRC.

Conclusions

We clarified that RTP4 could be silenced by histone H3K9 methylation as the early event of ICB resistance. RTP4 expression could be a promising biomarker for predicting ICB response, and the combination of epigenetic drugs and immune checkpoint inhibitors might exhibit synergistic effects on dMMR/MSI-H CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSS:

Bisulfite sequencing

CCLE:

Cancer cell line encyclopedia

ChIP:

Chromatin immunoprecipitation

CMS:

Consensus molecular subtype

CRC:

Colorectal cancer

dMMR:

Mismatch repair-deficient

FBS:

Fetal bovine serum

GDC:

National Cancer Institute Genomic Data Commons

H3K9:

Histone H3 lysine 9

HDAC:

Histone deacetylase

ICB:

Immune checkpoint blockade

IFN:

Interferon

JAK:

Janus kinase

KO:

Knockout

MHC-I:

Major histocompatibility complex class 1

MSI-H:

Microsatellite instability-high

MSS:

Microsatellite stable

OS:

Overall survival

PFS:

Progression-free survival

pMMR:

Mismatch repair-proficient

TCGA:

Cancer Genome Atlas Research Network

TIDE:

Tumor Immune Dysfunction and Exclusion

References

  1. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nicolantonio FD, Vitiello PP, Marsoni S, et al. Precision oncology in metastatic colorectal cancer—from biology to medicine. Nat Rev Clin Oncol. 2021;18:506–25.

    Article  PubMed  Google Scholar 

  4. Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349:247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 2014;20:5322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21:1350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le DT, Kim TW, Cutsem EV, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: keynote-164. J Clin Oncol. 2020;38:11–9.

    Article  CAS  PubMed  Google Scholar 

  10. André T, Shiu K, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–18.

    Article  PubMed  Google Scholar 

  11. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25–39.

    Article  CAS  PubMed  Google Scholar 

  13. Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  PubMed  Google Scholar 

  14. Sakuma T, Nakade S, Sakane Y, et al. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11:118–33.

    Article  CAS  PubMed  Google Scholar 

  15. Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  16. Fu J, Li K, Zhang W, et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sveen A, Bruun J, Eide PW, et al. Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin Cancer Res. 2018;24:794–806.

    Article  CAS  PubMed  Google Scholar 

  18. Gide TN, Quek C, Menzies AM, et al. distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/anti-CTLA-4 combined therapy. Cancer Cell. 2019;35:238–55.

    Article  CAS  PubMed  Google Scholar 

  19. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manguso RT, Pope HW, Zimmer MD, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature. 2011;472:481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He X, Ashbrook AW, Du Y, et al. RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology. Proc Natl Acad Sci U S A. 2020;117:19465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boys IN, Xu E, Mar KB, et al. RTP4 is a potent IFN-inducible anti-flavivirus effector engaged in a host-virus arms race in bats and other mammals. Cell Host Microbe. 2020;28:712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wroblewska A, Dhainaut M, Ben-Zvi B, et al. Protein barcodes enable high-dimensional single-cell CRISPR screens. Cell. 2018;175:1141–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pascual-García M, Bonfill-Teixidor E, Planas-Rigol E, et al. LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 2019;10:2416.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wiede F, Lu KH, Du X, et al. PTP1B is an intracellular checkpoint that limits T-cell and CAR T-cell antitumor immunity. Cancer Discov. 2022;12:752–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Chen AX, Gartrell RD, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019;25:462–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mariathasan S, Turley SJ, Nickles D, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hogg SJ, Beavis PA, Dawson MA, et al. Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov. 2020;19:776–800.

    Article  CAS  PubMed  Google Scholar 

  30. Griffin GK, Wu J, Iracheta-Vellve A, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature. 2021;595:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burr ML, Sparbier CE, Chan KL, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36:385–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Segovia C, José-Enériz ES, Munera-Maravilla E, et al. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med. 2019;25:1073–81.

    Article  CAS  PubMed  Google Scholar 

  33. Woods DM, Sodré AL, Villagra A, et al. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res. 2015;3:1375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Efremova M, Rieder D, Klepsch V, et al. Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution. Nat Commun. 2018;9:32.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kang YK, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–71.

    Article  CAS  PubMed  Google Scholar 

  36. Makker V, Colombo N, Herráez AC, et al. Lenvatinib plus pembrolizumab for advanced endometrial cancer. N Engl J Med. 2022;386:437–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Hiromi Nagasaki for technical assistance. The plasmid lentiCRISPR v2 (#52961; Addgene) was a gift from Dr. Feng Zhang. The plasmids psPAX2 (#12260; Addgene) and pMD2.G (#12259; Addgene) were generously provided from Dr. Didier Trono. This work was supported by Grants-in-Aid for Scientific Research (A; 19H01055) and Challenging Research (Exploratory; 22K19554) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; Research Grant from the Princess Takamatsu Cancer Research Fund; P-CREATE (JP19cm0106540) from AMED (Japan Agency for Medical Research and Development).

Author information

Authors and Affiliations

Authors

Contributions

YY, SS, YA, ST (Tsukihara) and RS performed experiments and analyzed data. YY and SS wrote the manuscript. YA, AK, MT, YK (Kinugasa), YK (Kawakami) and ST (Tanaka) revised the manuscript. SS and ST (Tanaka) designed the study. SS performed bioinformatics analysis and visualized data. YK (Kawakami) provided suggestions for immunological assays. ST (Tanaka) supervised the study.

Corresponding authors

Correspondence to Shu Shimada or Shinji Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6925 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Shimada, S., Akiyama, Y. et al. RTP4 silencing provokes tumor-intrinsic resistance to immune checkpoint blockade in colorectal cancer. J Gastroenterol 58, 540–553 (2023). https://doi.org/10.1007/s00535-023-01969-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-01969-w

Keywords

Navigation