Skip to main content

Advertisement

Log in

Impact of eradication of hepatitis C virus on liver-related and -unrelated diseases: morbidity and mortality of chronic hepatitis C after SVR

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

A Correction to this article was published on 09 February 2023

This article has been updated

Abstract

Hepatitis C virus infection is characterized by chronic liver inflammation and fibrogenesis, leading to end-stage liver failure and hepatocellular carcinoma over the course of 20 to 30 years. It seems not only the chronicity of hepatitis C but also the presence of the virus in non-hepatic tissues creates a favorable environment for the potential development of pathogenic impacts on extrahepatic systems and organs. Numerous extra-hepatic manifestations have been reported in association with HCV infection, all of which can substantially affect morbidity, mortality, and quality of life. With the recent development of DAAs, antiviral treatment can cure almost all patients with HCV infection, even those intolerant of or unresponsive to IFN treatment, and several large multicenter studies have confirmed the association of DAA-induced SVR with reductions in liver-related and liver-unrelated complications, such as cardiovascular events, end stage renal disease, and so on. Because, in addition to liver-related diseases, extrahepatic lesions are threatening for patients, it is important to eradicate the virus before these progress and affect life prognosis; in other words, patients should be treated before reaching the point of no return. Tailored surveillance with biomarkers such as M2BPGi and Ang-2, which can be used to identify patients with an elevated risk of EHM, and early prevention or treatment for these patients could improve the morbidity, mortality and QOL. Advancement of both basic and clinical research in this field including the development of more precise biomarkers is highly anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

Abbreviations

HCV:

Hepatitis C virus

EHM:

Extra-hepatic manifestations

CVD:

Cardiovascular diseases

NHL:

Non-Hodgkin’s lymphoma

MACE:

Major adverse cardiovascular events

ESRD:

End stage renal disease

DAAs:

Direct-acting antiviral agents

CHC:

Chronic hepatitis C

HCC:

Hepatocellular carcinoma

SVR:

Sustained virological response

QOL:

Quality of life

IFN-λ3:

The type III interferon

ROS:

Reactive oxygen species

SASP:

Senescence-associated secretory phenotype

IL-6:

Interleukin-6

IFN:

Interferon

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor-α

CRP:

C-reactive protein

Mincle:

Macrophage-inducible C-type lectin

HRQL:

Health-related quality of life

PROs:

Patient-reported outcomes

LDL-C:

Low-density lipoprotein cholesterol

EV:

Esophageal varices

IP-10:

IFN-γ-induced protein 10

CXCL10:

Chemokine (C-X-C motif) ligand 10

M2BPGi:

Mac-2 binding protein glycosylation isomer

HVPG:

Hepatic venous pressure gradient

Ang-2:

Angiopoietin-2

References

  1. Cacoub P, Poynard T, Ghillani P, et al. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Arthritis Rheum. 1999;42:2204–12.

    Article  CAS  PubMed  Google Scholar 

  2. Cacoub P, Saadoun D. Extrahepatic manifestations of chronic HCV infection. N Engl J Med. 2021;384:1038–52.

    Article  CAS  PubMed  Google Scholar 

  3. Negro F, Forton D, Craxì A, et al. Extrahepatic morbidity and mortality of chronic hepatitis C. Gastroenterology. 2015;149:1345–60.

    Article  PubMed  Google Scholar 

  4. Mazzaro C, Quartuccio L, Adinolfi LE, et al. A review on extrahepatic manifestations of chronic hepatitis C virus infection and the impact of direct-acting antiviral therapy. Viruses. 2021;13:2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohanty A, Salameh S, Butt AA. Impact of direct acting antiviral agent therapy upon extrahepatic manifestations of hepatitis C virus infection. Curr HIV/AIDS Rep. 2019;16:389–94.

    Article  PubMed  Google Scholar 

  6. Feld JJ, Jacobson IM, Hézode C, et al. Sofosbuvir and Velpatasvir for HCV Genotype 1, 2, 4, 5, and 6 Infection. N Engl J Med. 2015;373:2599–607.

    Article  CAS  PubMed  Google Scholar 

  7. Foster GR, Afdhal N, Roberts SK, et al. Sofosbuvir and velpatasvir for HCV genotype 2 and 3 infection. N Engl J Med. 2015;373:2608–17.

    Article  CAS  PubMed  Google Scholar 

  8. Foster GR, Mangia A, Sulkowski M. Sofosbuvir and velpatasvir for patients with HCV infection. N Engl J Med. 2016;374:1687–8.

    Article  PubMed  Google Scholar 

  9. Tahata Y, Hikita H, Mochida S, et al. Liver-related events after direct-acting antiviral therapy in patients with hepatitis C virus-associated cirrhosis. J Gastroenterol. 2022;57:120–32.

    Article  CAS  PubMed  Google Scholar 

  10. Roth D, Nelson DR, Bruchfeld A, et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4–5 chronic kidney disease (the C-SURFER study): a combination phase 3 study. Lancet. 2015;386:1537–45.

    Article  CAS  PubMed  Google Scholar 

  11. Suda G, Kudo M, Nagasaka A, et al. Efficacy and safety of daclatasvir and asunaprevir combination therapy in chronic hemodialysis patients with chronic hepatitis C. J Gastroenterol. 2016;51:733–40.

    Article  CAS  PubMed  Google Scholar 

  12. Aqel B, Wijarnpreecha K, Pungpapong S, et al. Outcomes following liver transplantation from HCV-seropositive donors to HCV-seronegative recipients. J Hepatol. 2021;74:873–80.

    Article  CAS  PubMed  Google Scholar 

  13. Asahina Y, Tsuchiya K, Nishimura T, et al. α-fetoprotein levels after interferon therapy and risk of hepatocarcinogenesis in chronic hepatitis C. Hepatology. 2013;58:1253–62.

    Article  CAS  PubMed  Google Scholar 

  14. Asahina Y, Drafting Committee for Hepatitis Management Guidelines tJSoH. JSH Guidelines for the Management of Hepatitis C Virus Infection. Update; protective effect of antiviral therapy against Hepatocarcinogenesis. Hepatol Res. 2019;2020(50):775–90.

    Google Scholar 

  15. Ioannou GN, Feld JJ. What are the benefits of a sustained virologic response to direct-acting antiviral therapy for hepatitis C virus infection? Gastroenterology. 2019;156:446-460.e2.

    Article  CAS  PubMed  Google Scholar 

  16. Cacoub P, Desbois AC, Comarmond C, et al. Impact of sustained virological response on the extrahepatic manifestations of chronic hepatitis C: a meta-analysis. Gut. 2018;67:2025–34.

    Article  CAS  PubMed  Google Scholar 

  17. Ramos-Casals M, Zignego AL, Ferri C, et al. Evidence-based recommendations on the management of extrahepatic manifestations of chronic hepatitis C virus infection. J Hepatol. 2017;66:1282–99.

    Article  PubMed  Google Scholar 

  18. Alter MJ. Epidemiology of hepatitis C. Hepatology. 1997;26:S62–5.

    Article  Google Scholar 

  19. Seeff LB, Buskellbales Z, Wright EC, et al. Long-term mortality after transfusion-associated non-A-hepatitis non-B-hepatitis. New Engl J Med. 1992;327:1906–11.

    Article  CAS  PubMed  Google Scholar 

  20. Tong MJ, El-Farra NS, Reikes AR, et al. Clinical outcomes after transfusion-associated hepatitis C. N Engl J Med. 1995;332:1463–6.

    Article  CAS  PubMed  Google Scholar 

  21. Desmet VJ, Gerber M, Hoofnagle JH, et al. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994;19:1513–20.

    Article  CAS  PubMed  Google Scholar 

  22. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet. 1997;349:825–32.

    Article  CAS  PubMed  Google Scholar 

  23. Hamada H, Yatsuhashi H, Yano K, et al. Impact of aging on the development of hepatocellular carcinoma in patients with posttransfusion chronic hepatitis C. Cancer. 2002;95:331–9.

    Article  PubMed  Google Scholar 

  24. Asahina Y, Tsuchiya K, Tamaki N, et al. Effect of aging on risk for hepatocellular carcinoma in chronic hepatitis C virus infection. Hepatology. 2010;52:518–27.

    Article  CAS  PubMed  Google Scholar 

  25. Moriya K, Fujie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med. 1998;4:1065–7.

    Article  CAS  PubMed  Google Scholar 

  26. Moriya K, Nakagawa K, Santa T, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res. 2001;61:4365–70.

    CAS  PubMed  Google Scholar 

  27. Leslie J, Geh D, Elsharkawy AM, et al. Metabolic dysfunction and cancer in HCV: shared pathways and mutual interactions. J Hepatol. 2022;77:219–36.

    Article  CAS  PubMed  Google Scholar 

  28. Wandrer F, Han B, Liebig S, et al. Senescence mirrors the extent of liver fibrosis in chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2018;48:270–80.

    Article  CAS  PubMed  Google Scholar 

  29. Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology. 2021;73(Suppl 1):4–13.

    Article  CAS  PubMed  Google Scholar 

  32. Kar P. Risk factors for hepatocellular carcinoma in India. J Clin Exp Hepatol. 2014;4:S34-42.

    Article  PubMed  PubMed Central  Google Scholar 

  33. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  CAS  PubMed  Google Scholar 

  34. Hiramatsu N, Oze T, Takehara T. Suppression of hepatocellular carcinoma development in hepatitis C patients given interferon-based antiviral therapy. Hepatol Res. 2015;45:152–61.

    Article  CAS  PubMed  Google Scholar 

  35. Miki D, Akita T, Kurisu A, et al. PNPLA3 and HLA-DQB1 polymorphisms are associated with hepatocellular carcinoma after hepatitis C virus eradication. J Gastroenterol. 2020;55:1162–70.

    Article  CAS  PubMed  Google Scholar 

  36. Naugler WE, Sakurai T, Kim S, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.

    Article  CAS  PubMed  Google Scholar 

  37. Naugler WE, Karin M. The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med. 2008;14:109–19.

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa H, Maeda S, Yoshida H, et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer. 2009;125:2264–9.

    Article  CAS  PubMed  Google Scholar 

  39. Villa E, Karampatou A, Cammà C, et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology. 2011;140:818–29.

    Article  PubMed  Google Scholar 

  40. Pawlotsky JM, Ben Yahia M, Andre C, et al. Immunological disorders in C virus chronic active hepatitis: a prospective case-control study. Hepatology. 1994;19:841–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gumber SC, Chopra S. Hepatitis C: a multifaceted disease. Review of extrahepatic manifestations. Ann Intern Med. 1995;123:615–20.

    Article  CAS  PubMed  Google Scholar 

  42. Ferri C, La Civita L, Longombardo G, et al. Hepatitis C virus and mixed cryoglobulinaemia. Eur J Clin Invest. 1993;23:399–405.

    Article  CAS  PubMed  Google Scholar 

  43. Roguljic H, Nincevic V, Bojanic K, et al. Impact of DAA treatment on cardiovascular disease risk in chronic HCV infection: an update. Front Pharmacol. 2021;12: 678546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Babiker A, Jeudy J, Kligerman S, et al. Risk of cardiovascular disease due to chronic hepatitis C infection: a review. J Clin Transl Hepatol. 2017;5:343–62.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zampino R, Marrone A, Restivo L, et al. Chronic HCV infection and inflammation: clinical impact on hepatic and extra-hepatic manifestations. World J Hepatol. 2013;5:528–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tanaka M, Ikeda K, Suganami T, et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat Commun. 2014;5:4982.

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka M. Molecular mechanism of obesity-induced adipose tissue inflammation; the role of Mincle in adipose tissue fibrosis and ectopic lipid accumulation. Endocr J. 2020;67:107–11.

    Article  CAS  PubMed  Google Scholar 

  48. Nitta S, Sakamoto N, Nakagawa M, et al. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology. 2013;57:46–58.

    Article  CAS  PubMed  Google Scholar 

  49. Su AI, Pezacki JP, Wodicka L, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA. 2002;99:15669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A. 2005;102:2561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cacoub P, Desbois AC, Isnard-Bagnis C, et al. Hepatitis C virus infection and chronic kidney disease: time for reappraisal. J Hepatol. 2016;65:S82-94.

    Article  PubMed  Google Scholar 

  52. Adinolfi LE, Petta S, Fracanzani AL, et al. Impact of hepatitis C virus clearance by direct-acting antiviral treatment on the incidence of major cardiovascular events: a prospective multicentre study. Atherosclerosis. 2020;296:40–7.

    Article  CAS  PubMed  Google Scholar 

  53. Cacoub P, Hepatitis C. Virus infection, a new modifiable cardiovascular risk factor. Gastroenterology. 2019;156:862–4.

    Article  PubMed  Google Scholar 

  54. Ferri C, Zignego AL, Giuggioli D, et al. HCV and cryoglobulinemic vasculitis. Cleve Clin J Med. 2002;69(Suppl 2):SII20–3.

    PubMed  Google Scholar 

  55. Gragnani L, Lorini S, Marri S, et al. Predictors of long-term cryoglobulinemic vasculitis outcomes after HCV eradication with direct-acting antivirals in the real-life. Autoimmun Rev. 2022;21: 102923.

    Article  CAS  PubMed  Google Scholar 

  56. Younossi Z, Park H, Henry L, et al. Extrahepatic manifestations of hepatitis C: a meta-analysis of prevalence, quality of life, and economic burden. Gastroenterology. 2016;150:1599–608.

    Article  PubMed  Google Scholar 

  57. Gisbert JP, García-Buey L, Pajares JM, et al. Prevalence of hepatitis C virus infection in B-cell non-Hodgkin’s lymphoma: systematic review and meta-analysis. Gastroenterology. 2003;125:1723–32.

    Article  PubMed  Google Scholar 

  58. Persico M, Aglitti A, Caruso R, et al. Efficacy and safety of new direct antiviral agents in hepatitis C virus-infected patients with diffuse large B-cell non-Hodgkin’s lymphoma. Hepatology. 2018;67:48–55.

    Article  CAS  PubMed  Google Scholar 

  59. Arcaini L, Besson C, Frigeni M, et al. Interferon-free antiviral treatment in B-cell lymphoproliferative disorders associated with hepatitis C virus infection. Blood. 2016;128:2527–32.

    Article  CAS  PubMed  Google Scholar 

  60. Peveling-Oberhag J, Arcaini L, Bankov K, et al. The anti-lymphoma activity of antiviral therapy in HCV-associated B-cell non-Hodgkin lymphomas: a meta-analysis. J Viral Hepat. 2016;23:536–44.

    Article  CAS  PubMed  Google Scholar 

  61. Hoofnagle JH, Mullen KD, Jones DB, et al. Treatment of chronic non-A, non-B hepatitis with recombinant human alpha interferon. A preliminary report. N Engl J Med. 1986;315:1575–8.

    Article  CAS  PubMed  Google Scholar 

  62. Yoshida H, Shiratori Y, Moriyama M, et al. Interferon therapy reduces the risk for hepatocellular carcinoma: national surveillance program of cirrhotic and noncirrhotic patients with chronic hepatitis C in Japan. Ann Inter Med. 1999;131:174.

    Article  CAS  Google Scholar 

  63. Yoshida H, Tateishi R, Arakawa Y, et al. Benefit of interferon therapy in hepatocellular carcinoma prevention for individual patients with chronic hepatitis C. Gut. 2004;53:425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. George SL, Bacon BR, Brunt EM, et al. Clinical, virologic, histologic, and biochemical outcomes after successful HCV therapy: a 5-year follow-up of 150 patients. Hepatology. 2009;49:729–38.

    Article  CAS  PubMed  Google Scholar 

  65. Okanoue T, Itoh Y, Minami M, et al. Interferon therapy lowers the rate of progression to hepatocellular carcinoma in chronic hepatitis C but not significantly in an advanced stage: a retrospective study in 1148 patients Viral Hepatitis Therapy Study Group. J Hepatol. 1999;30:653–9.

    Article  CAS  PubMed  Google Scholar 

  66. Nishiguchi S, Kuroki T, Nakatani S, et al. Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. Lancet. 1995;346:1051–5.

    Article  CAS  PubMed  Google Scholar 

  67. Morgan RL, Baack B, Smith BD, et al. Eradication of hepatitis C Virus infection and the development of hepatocellular carcinoma a meta-analysis of observational studies. Ann Intern Med. 2013;158:329.

    Article  PubMed  Google Scholar 

  68. Reig M, Mariño Z, Perelló C, et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol. 2016;65:719–26.

    Article  CAS  PubMed  Google Scholar 

  69. Meissner EG, Wu D, Osinusi A, et al. Endogenous intrahepatic IFNs and association with IFN-free HCV treatment outcome. J Clin Invest. 2014;124:3352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Debes JD, van Tilborg M, Groothuismink ZMA, et al. Levels of cytokines in serum associate with development of hepatocellular carcinoma in patients with HCV infection treated with direct-acting antivirals. Gastroenterology. 2018;154:515-517.e3.

    Article  CAS  PubMed  Google Scholar 

  71. Carlin AF, Aristizabal P, Song Q, et al. Temporal dynamics of inflammatory cytokines/chemokines during sofosbuvir and ribavirin therapy for genotype 2 and 3 hepatitis C infection. Hepatology. 2015;62:1047–58.

    Article  CAS  PubMed  Google Scholar 

  72. Faillaci F, Marzi L, Critelli R, et al. Liver angiopoietin-2 is a key predictor of De Novo or recurrent hepatocellular cancer after hepatitis C Virus direct-acting antivirals. Hepatology. 2018;68:1010–24.

    Article  CAS  PubMed  Google Scholar 

  73. Villani R, Vendemiale G, Serviddio G. Molecular mechanisms involved in HCC recurrence after direct-acting antiviral therapy. Int J Mol Sci. 2018;20(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Reig M, Mariño Z, Perelló C, et al. Unexpected early tumor recurrence in patients with hepatitis C virus -related hepatocellular carcinoma undergoing interferon-free therapy: a note of caution. J Hepatol. 2016;65(4):719–26.

    Article  CAS  PubMed  Google Scholar 

  75. Mettke F, Schlevogt B, Deterding K, et al. Interferon-free therapy of chronic hepatitis C with direct-acting antivirals does not change the short-term risk for de novo hepatocellular carcinoma in patients with liver cirrhosis. Aliment Pharmacol Ther. 2018;47:516–25.

    Article  CAS  PubMed  Google Scholar 

  76. Nagata H, Nakagawa M, Asahina Y, et al. Effect of interferon-based and -free therapy on early occurrence and recurrence of hepatocellular carcinoma in chronic hepatitis C. J Hepatol. 2017;67:933–9.

    Article  CAS  PubMed  Google Scholar 

  77. Singal AG, Rich NE, Mehta N, et al. Direct-acting antiviral therapy for hepatitis C Virus infection is associated with increased survival in patients with a history of hepatocellular carcinoma. Gastroenterology. 2019;157:1253-1263.e2.

    Article  CAS  PubMed  Google Scholar 

  78. Singal AG, Rich NE, Mehta N, et al. Direct-acting antiviral therapy not associated with recurrence of hepatocellular carcinoma in a multicenter North American cohort study. Gastroenterology. 2019;156(6):1683-1692.e1.

    Article  PubMed  Google Scholar 

  79. Cabibbo G, Petta S, Barbàra M, et al. A meta-analysis of single HCV-untreated arm of studies evaluating outcomes after curative treatments of HCV-related hepatocellular carcinoma. Liver Int. 2017;37:1157–66.

    Article  CAS  PubMed  Google Scholar 

  80. Cabibbo G, Celsa C, Calvaruso V, et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol. 2019;71:265–73.

    Article  CAS  PubMed  Google Scholar 

  81. Sapena V, Enea M, Torres F, et al. Hepatocellular carcinoma recurrence after direct-acting antiviral therapy: an individual patient data meta-analysis. Gut. 2021;71(3):593–604.

    Article  PubMed  Google Scholar 

  82. Ochi H, Hiraoka A, Hirooka M, et al. Direct-acting antivirals improve survival and recurrence rates after treatment of hepatocellular carcinoma within the Milan criteria. J Gastroenterol. 2021;56:90–100.

    Article  CAS  PubMed  Google Scholar 

  83. Tanaka S, Shinkawa H, Tamori A, et al. Postoperative direct-acting antiviral treatment after liver resection in patients with hepatitis C virus-related hepatocellular carcinoma. Hepatol Res. 2021;51:1102–14.

    Article  CAS  PubMed  Google Scholar 

  84. Seko Y, Moriguchi M, Takahashi A, et al. Hepatitis C virus eradication prolongs overall survival in hepatocellular carcinoma patients receiving molecular-targeted agents. J Gastroenterol. 2022;57:90–8.

    Article  CAS  PubMed  Google Scholar 

  85. Butt AA, Yan P, Shuaib A, et al. Direct-acting antiviral therapy for HCV infection is associated with a reduced risk of cardiovascular disease events. Gastroenterology. 2019;156:987-996.e8.

    Article  PubMed  Google Scholar 

  86. Mahale P, Engels EA, Li R, et al. The effect of sustained virological response on the risk of extrahepatic manifestations of hepatitis C virus infection. Gut. 2018;67:553–61.

    Article  CAS  PubMed  Google Scholar 

  87. Petta S, Adinolfi LE, Fracanzani AL, et al. Hepatitis C virus eradication by direct-acting antiviral agents improves carotid atherosclerosis in patients with severe liver fibrosis. J Hepatol. 2018;69:18–24.

    Article  CAS  PubMed  Google Scholar 

  88. Adinolfi LE, Petta S, Fracanzani AL, et al. Reduced incidence of type 2 diabetes in patients with chronic hepatitis C virus infection cleared by direct-acting antiviral therapy: a prospective study. Diabetes Obes Metab. 2020;22:2408–16.

    Article  CAS  PubMed  Google Scholar 

  89. Hashimoto S, Yatsuhashi H, Abiru S, et al. Rapid increase in serum low-density lipoprotein cholesterol concentration during Hepatitis C interferon-free treatment. PLoS One. 2016;11: e0163644.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Younossi ZM, Stepanova M, Afdhal N, et al. Improvement of health-related quality of life and work productivity in chronic hepatitis C patients with early and advanced fibrosis treated with ledipasvir and sofosbuvir. J Hepatol. 2015;63:337–45.

    Article  CAS  PubMed  Google Scholar 

  91. Younossi ZM, Stepanova M, Charlton M, et al. Patient-reported outcomes with sofosbuvir and velpatasvir with or without ribavirin for hepatitis C virus-related decompensated cirrhosis: an exploratory analysis from the randomised, open-label ASTRAL-4 phase 3 trial. Lancet Gastroenterol Hepatol. 2016;1:122–32.

    Article  PubMed  Google Scholar 

  92. Janjua NZ, Wong S, Abdia Y, et al. Impact of direct-acting antivirals for HCV on mortality in a large population-based cohort study. J Hepatol. 2021;75:1049–57.

    Article  CAS  PubMed  Google Scholar 

  93. Calvaruso V, Craxì A. Hepatic benefits of HCV cure. J Hepatol. 2020;73:1548–56.

    Article  CAS  PubMed  Google Scholar 

  94. Backus LI, Belperio PS, Shahoumian TA, et al. Direct-acting antiviral sustained virologic response: Impact on mortality in patients without advanced liver disease. Hepatology. 2018;68:827–38.

    Article  CAS  PubMed  Google Scholar 

  95. Backus LI, Belperio PS, Shahoumian TA, et al. Impact of sustained virologic response with direct-acting antiviral treatment on mortality in patients with advanced liver disease. Hepatology. 2019;69:487–97.

    Article  CAS  PubMed  Google Scholar 

  96. Carrat F, Fontaine H, Dorival C, et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: a prospective cohort study. Lancet. 2019;393:1453–64.

    Article  CAS  PubMed  Google Scholar 

  97. Krassenburg LAP, Maan R, Ramji A, et al. Clinical outcomes following DAA therapy in patients with HCV-related cirrhosis depend on disease severity. J Hepatol. 2021;74:1053–63.

    Article  PubMed  Google Scholar 

  98. D’Ambrosio R, Degasperi E, Anolli MP, et al. Incidence of liver- and non-liver-related outcomes in patients with HCV-cirrhosis after SVR. J Hepatol. 2022;76:302–10.

    Article  CAS  PubMed  Google Scholar 

  99. Vinaixa C, Strasser SI, Berenguer M. Disease reversibility in patients with post-hepatitis C cirrhosis: is the point of no return the same before and after liver transplantation? A Review. Transplantation. 2017;101:916–23.

    Article  PubMed  Google Scholar 

  100. Rockey DC, Friedman SL. Fibrosis regression after eradication of hepatitis C Virus: from bench to bedside. Gastroenterology. 2021;160:1502-1520.e1.

    Article  CAS  PubMed  Google Scholar 

  101. Kaneko S, Kurosaki M, Kurisu A, et al. Impact of antiviral therapy for disease progression and non-invasive liver fibrosis index in patients with chronic hepatitis C: markov chain model analysis. Hepatol Res. 2022;52:665–76.

    Article  CAS  PubMed  Google Scholar 

  102. Bruno S, Crosignani A, Facciotto C, et al. Sustained virologic response prevents the development of esophageal varices in compensated, Child-Pugh class A hepatitis C virus-induced cirrhosis A 12-year prospective follow-up study. Hepatology. 2010;51:2069–76.

    Article  CAS  PubMed  Google Scholar 

  103. Mandorfer M, Kozbial K, Schwabl P, et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol. 2016;65:692–9.

    Article  PubMed  Google Scholar 

  104. Atsukawa M, Tsubota A, Kondo C, et al. Time-course changes in liver functional reserve after successful sofosbuvir/velpatasvir treatment in patients with decompensated cirrhosis. Hepatol Res. 2022;52:235–46.

    Article  CAS  PubMed  Google Scholar 

  105. Ramachandran P, Iredale JP, Fallowfield JA. Resolution of liver fibrosis: basic mechanisms and clinical relevance. Semin Liver Dis. 2015;35:119–31.

    Article  CAS  PubMed  Google Scholar 

  106. Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol. 2008;26:431–42.

    Article  CAS  PubMed  Google Scholar 

  107. Katoh R, Maekawa S, Osawa L, et al. Significance of serum IP-10/CXCL10 measurement in predicting post-daa treatment liver function in patients WITH HCV-decompensated liver cirrhosis. Hepatol Res. 2022. https://doi.org/10.1111/hepr.13861.

    Article  PubMed  Google Scholar 

  108. Nagata H, Nakagawa M, Asahina Y. Reply to: "imaging asis of AFP and WFA. J Hepatol. 2018;68:607–8.

    Article  PubMed  Google Scholar 

  109. Nakagawa M, Nawa N, Takeichi E, et al. Mac-2 binding protein glycosylation isomer as a novel predictive biomarker for patient survival after hepatitis C virus eradication by DAAs. J Gastroenterol. 2020;55:990–9.

    Article  CAS  PubMed  Google Scholar 

  110. Kuno A, Ikehara Y, Tanaka Y, et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep. 2013;3:1065.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sasaki T, Brakebusch C, Engel J, et al. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin. EMBO J. 1998;17:1606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230:160–71.

    Article  CAS  PubMed  Google Scholar 

  113. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.

    Article  CAS  PubMed  Google Scholar 

  114. Sugiura T, Dohi Y, Takase H, et al. Serum levels of Mac-2 binding protein increase with cardiovascular risk and reflect silent atherosclerosis. Atherosclerosis. 2016;251:192–6.

    Article  CAS  PubMed  Google Scholar 

  115. Sugiura T, Dohi Y, Takase H, et al. Factors associated with longitudinal changes in serum concentrations of Mac-2 binding protein: a prospective 3-year observational study. Nutr Metab Cardiovasc Dis. 2019;29:1337–44.

    Article  CAS  PubMed  Google Scholar 

  116. Wu PS, Hsieh YC, Lee KC, et al. Mac-2 binding protein glycosylation isomer is a potential biomarker to predict portal hypertension and bacterial infection in cirrhotic patients. PLoS One. 2021;16: e0258589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Allegretti AS, Vela Parada X, Ortiz GA, et al. Serum angiopoietin-2 predicts mortality and kidney outcomes in decompensated cirrhosis. Hepatology. 2019;69:729–41.

    Article  CAS  PubMed  Google Scholar 

  118. Kawagishi N, Suda G, Kimura M, et al. High serum angiopoietin-2 level predicts non-regression of liver stiffness measurement-based liver fibrosis stage after direct-acting antiviral therapy for hepatitis C. Hepatol Res. 2020;50:671–81.

    Article  CAS  PubMed  Google Scholar 

  119. Kawagishi N, Suda G, Kimura M, et al. Baseline elevated serum Angiopoietin-2 predicts long-term non-regression of liver fibrosis after direct-acting antiviral therapy for hepatitis C. Sci Rep. 2021;11:9207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ao J, Chiba T, Kanzaki H, et al. Serum Angiopoietin 2 acts as a diagnostic and prognostic biomarker in hepatocellular carcinoma. J Cancer. 2021;12:2694–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Souma T, Thomson BR, Heinen S, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci USA. 2018;115:1298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Benest AV, Kruse K, Savant S, et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS One. 2013;8: e70459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Goettsch W, Gryczka C, Korff T, et al. Flow-dependent regulation of angiopoietin-2. J Cell Physiol. 2008;214:491–503.

    Article  CAS  PubMed  Google Scholar 

  124. Suzuki T, Matsuura K, Nagura Y, et al. Serum angiopoietin-2 levels predict regression of Mac-2 binding protein glycosylation isomer-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. Hepatol Res. 2022;52(11):919–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank many of the collaborative researchers and colleagues in the hospital who participated in the Ochanomizu Liver Conference Study Group. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Numbers 22fk0210106, 22fk0210104, 22fk0210067, 22fk0210072, 22ama221302, 22fk0210113, 22fk0210102, and Grant-in-Aid for Scientific Research (KAKENHI grant numbers 20K08303, 21H02896, 21K07939, 21K07977, 21K19476, 22H03054, and 22K08005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Asahina.

Ethics declarations

Conflict of interest

MN is an associate editor of the journal of gastroenterology. YA belongs to a donation-funded department funded by Gilead Sciences, AbbVie GK, Toray Industries, and Fujirebio Inc. SK belongs to a donation-funded department funded by Gilead Sciences, AbbVie GK, Toray Industries, and Fujirebio until May 2020. RO received a donation from Mitsubishi Tanabe Pharma Corporation, Zeria Pharmaceutical Co. Ltd and Mochida Pharmaceutical Co.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to delete the second paragraph under the heading “Summary and future direction” since it is a part of figure 1 caption and added in figure 1 caption.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, M., Asahina, Y., Kakinuma, S. et al. Impact of eradication of hepatitis C virus on liver-related and -unrelated diseases: morbidity and mortality of chronic hepatitis C after SVR. J Gastroenterol 58, 299–310 (2023). https://doi.org/10.1007/s00535-022-01940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01940-1

Keywords

Navigation