Skip to main content

Advertisement

Log in

Renal manifestations in inflammatory bowel disease: a systematic review

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

As extra-intestinal manifestations (EIMs) are frequent in inflammatory bowel disease (IBD) and affect morbidity and sometimes even mortality, vigilance in the surveillance of EIMs and installing the appropriate treatment are essential. Data on renal manifestations in patients with IBD are however rare. Nevertheless, up to 5–15% of adult patients with IBD will develop chronic kidney disease over time. The pathophysiology of renal involvement in patients with IBD is complex and poorly understood, with a wide range of renal disorders affecting the glomeruli and/or the tubular structure. Furthermore, medication used to treat IBD can be potentially nephrotoxic and metabolic complication due to the disease itself can furthermore cause renal damage. The aim of this systematic review is to provide an overview of the existing data in literature on these renal manifestations and complications in patients with IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

5-ASA:

5-Aminosalicylic acid

CAKUT:

Congenital abnormalities of the kidney and urinary tract

CD:

Crohn’s disease

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

EIM:

Extra-intestinal manifestations

ESRD:

End-stage renal disease

HLA:

Human leukocyte antigen

IBD:

Inflammatory bowel disease

TNF-α:

Tumor necrosis factor alpha

UC:

Ulcerative colitis

References

  1. Maaser C, Sturm A, Vavricka SR, et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis. 2019;13:144–64.

    Article  PubMed  Google Scholar 

  2. Harbord M, Annese V, Vavricka SR, et al. The first european evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10:239–54.

    Article  PubMed  Google Scholar 

  3. Jose FA, Garnett EA, Vittinghoff E, et al. Development of extraintestinal manifestations in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2009;15:63–8.

    Article  PubMed  Google Scholar 

  4. Greuter T, Bertoldo F, Rechner R, et al. Extraintestinal Manifestations of Pediatric Inflammatory Bowel Disease: Prevalence, Presentation, and Anti-TNF Treatment. J Pediatr Gastroenterol Nutr. 2017;65:200–6.

    Article  CAS  PubMed  Google Scholar 

  5. Guariso G, Gasparetto M, Visonà Dalla Pozza L, et al. Inflammatory bowel disease developing in paediatric and adult age. J Pediatr Gastroenterol Nutr. 2010;51:698–707.

  6. Vavricka SR, Brun L, Ballabeni P, et al. Frequency and risk factors for extraintestinal manifestations in the Swiss inflammatory bowel disease cohort. Am J Gastroenterol. 2011;106:110–9.

    Article  PubMed  Google Scholar 

  7. Monsén U, Sorstad J, Hellers G, et al. Extracolonic diagnoses in ulcerative colitis: an epidemiological study. Am J Gastroenterol. 1990;85:711–6.

    PubMed  Google Scholar 

  8. Hedin CRH, Vavricka SR, Stagg AJ, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy. J Crohns Colitis. 2019;13:541–54.

    Article  CAS  PubMed  Google Scholar 

  9. van Sommeren S, Janse M, Karjalainen J, et al. Extraintestinal manifestations and complications in inflammatory bowel disease: from shared genetics to shared biological pathways. Inflamm Bowel Dis. 2014;20:987–94.

    PubMed  Google Scholar 

  10. Greuter T, Vavricka SR. Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev Gastroenterol Hepatol. 2019;13:307–17.

    Article  CAS  PubMed  Google Scholar 

  11. Levine JS, Burakoff R. Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2011;7:235–41.

    Google Scholar 

  12. Rothfuss KS, Stange EF, Herrlinger KR. Extraintestinal manifestations and complications in inflammatory bowel diseases. World J Gastroenterol. 2006;12:4819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ott C, Schölmerich J. Extraintestinal manifestations and complications in IBD. Nat Rev Gastroenterol Hepatol. 2013;10:585–95.

    Article  CAS  PubMed  Google Scholar 

  14. Trikudanathan G, Venkatesh PG, Navaneethan U. Diagnosis and therapeutic management of extra-intestinal manifestations of inflammatory bowel disease. Drugs. 2012;72:2333–49.

    Article  CAS  PubMed  Google Scholar 

  15. Mutalib M. Renal involvement in paediatric inflammatory bowel disease. Pediatr Nephrol. 2021;36:279–85.

    Article  PubMed  Google Scholar 

  16. Torricelli FC, Reichard C, Monga M. Urolithiasis in complicated inflammatory bowel disease: a comprehensive analysis of urine profile and stone composition. Int Urol Nephrol. 2021;53:205–9.

    Article  CAS  PubMed  Google Scholar 

  17. Pardi DS, Tremaine WJ, Sandborn WJ, et al. Renal and urologic complications of inflammatory bowel disease. Am J Gastroenterol. 1998;93:504–14.

    Article  CAS  PubMed  Google Scholar 

  18. Bianchi L, Gaiani F, Bizzarri B, et al. Renal lithiasis and inflammatory bowel diseases, an update on pediatric population. Acta Biomed. 2018;89:76–80.

    CAS  PubMed  Google Scholar 

  19. Cury DB, Moss AC, Schor N. Nephrolithiasis in patients with inflammatory bowel disease in the community. Int J Nephrol Renovasc Dis. 2013;6:139–42.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stark CM, Gorman GH, Nylund CM. Association of inflammatory bowel disease and urolithiasis in hospitalized pediatric patients. Inflamm Bowel Dis. 2017;23:1777–82.

    Article  PubMed  Google Scholar 

  21. Dimke H, Winther-Jensen M, Allin KH, et al. Risk of urolithiasis in patients with inflammatory bowel disease: a nationwide danish cohort study 1977–2018. Clin Gastroenterol Hepatol. 2021;19:2532-40.e2.

    Article  CAS  PubMed  Google Scholar 

  22. Ganji-Arjenaki M, Nasri H, Rafieian-Kopaei M. Nephrolithiasis as a common urinary system manifestation of inflammatory bowel diseases; a clinical review and meta-analysis. J Nephropathol. 2017;6:264–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ambruzs JM, Larsen CP. Renal manifestations of inflammatory bowel disease. Rheum Dis Clin North Am. 2018;44:699–714.

    Article  PubMed  Google Scholar 

  24. Buchman AL, Moukarzel AA, Ament ME. Excessive urinary oxalate excretion occurs in long-term TPN patients both with and without ileostomies. J Am Coll Nutr. 1995;14:24–8.

    Article  CAS  PubMed  Google Scholar 

  25. Oikonomou K, Kapsoritakis A, Eleftheriadis T, et al. Renal manifestations and complications of inflammatory bowel disease. Inflamm Bowel Dis. 2011;17:1034–45.

    Article  PubMed  Google Scholar 

  26. Corica D, Romano C. Renal involvement in inflammatory bowel diseases. J Crohns Colitis. 2016;10:226–35.

    Article  PubMed  Google Scholar 

  27. Kumar R, Ghoshal UC, Singh G, et al. Infrequency of colonization with Oxalobacter formigenes in inflammatory bowel disease: possible role in renal stone formation. J Gastroenterol Hepatol. 2004;19:1403–9.

    Article  PubMed  Google Scholar 

  28. Hueppelshaeuser R, von Unruh GE, Habbig S, et al. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr Nephrol. 2012;27:1103–9.

    Article  PubMed  Google Scholar 

  29. Arora Z, Mukewar S, Lopez R, et al. Etiopathogenesis of nephrolithiasis in ulcerative colitis patients with the ileal pouch anal anastomosis. Inflamm Bowel Dis. 2017;23:840–6.

    Article  PubMed  Google Scholar 

  30. Clark JH, Fitzgerald JF, Bergstein JM. Nephrolithiasis in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 1985;4:829–34.

    Article  CAS  PubMed  Google Scholar 

  31. McConnell N, Campbell S, Gillanders I, et al. Risk factors for developing renal stones in inflammatory bowel disease. BJU Int. 2002;89:835–41.

    Article  CAS  PubMed  Google Scholar 

  32. Caudarella R, Rizzoli E, Pironi L, et al. Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc. 1993;7:371–9.

    CAS  PubMed  Google Scholar 

  33. Worcester EM. Stones from bowel disease. Endocrinol Metab Clin North Am. 2002;31:979–99.

    Article  CAS  PubMed  Google Scholar 

  34. Oikonomou KA, Kapsoritakis AN, Stefanidis I, et al. Drug-induced nephrotoxicity in inflammatory bowel disease. Nephron Clin Pract. 2011;119:c89-94.

    Article  CAS  PubMed  Google Scholar 

  35. Bennett WM, DeMattos A, Meyer MM, et al. Chronic cyclosporine nephropathy: the Achilles’ heel of immunosuppressive therapy. Kidney Int. 1996;50:1089–100.

    Article  CAS  PubMed  Google Scholar 

  36. Hosoi K, Arai K, Matsuoka K, et al. Prolonged tacrolimus for pediatric gastrointestinal disorder: Double-edged sword? Pediatr Int. 2017;59:588–92.

    Article  CAS  PubMed  Google Scholar 

  37. Corrigan G, Stevens PE. Review article: interstitial nephritis associated with the use of mesalazine in inflammatory bowel disease. Aliment Pharmacol Ther. 2000;14:1–6.

    Article  CAS  PubMed  Google Scholar 

  38. Schreiber S, Hämling J, Zehnter E, et al. Renal tubular dysfunction in patients with inflammatory bowel disease treated with aminosalicylate. Gut. 1997;40:761–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patel H, Barr A, Jeejeebhoy KN. Renal effects of long-term treatment with 5-aminosalicylic acid. Can J Gastroenterol. 2009;23:170–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calder IC, Funder CC, Green CR, et al. Nephrotoxic lesions from 5-aminosalicylic Acid. Br Med J. 1972;1:152–4.

  41. Bilyard KG, Joseph EC, Metcalf R. Mesalazine: an overview of key preclinical studies. Scand J Gastroenterol Suppl. 1990;172:52–5.

    Article  CAS  PubMed  Google Scholar 

  42. Van Staa TP, Travis S, Leufkens HG, et al. 5-aminosalicylic acids and the risk of renal disease: a large British epidemiologic study. Gastroenterology. 2004;126:1733–9.

    Article  PubMed  CAS  Google Scholar 

  43. Gisbert JP, González-Lama Y, Maté J. 5-Aminosalicylates and renal function in inflammatory bowel disease: a systematic review. Inflamm Bowel Dis. 2007;13:629–38.

    Article  PubMed  Google Scholar 

  44. Sehgal P, Colombel JF, Aboubakr A, et al. Systematic review: safety of mesalazine in ulcerative colitis. Aliment Pharmacol Ther. 2018;47:1597–609.

    Article  CAS  PubMed  Google Scholar 

  45. Heap GA, So K, Weedon M, et al. Clinical Features and HLA Association of 5-Aminosalicylate (5-ASA)-induced Nephrotoxicity in Inflammatory Bowel Disease. J Crohns Colitis. 2016;10:149–58.

    Article  PubMed  Google Scholar 

  46. de Jong DJ, Tielen J, Habraken CM, et al. 5-Aminosalicylates and effects on renal function in patients with Crohn’s disease. Inflamm Bowel Dis. 2005;11:972–6.

    Article  PubMed  Google Scholar 

  47. Jairath V, Hokkanen SRK, Guizzetti L, et al. No increased risk of nephrotoxicity associated with 5-aminosalicylic acid in IBD: a population-based cohort and nested case-control study. Aliment Pharmacol Ther. 2019;50:416–24.

    Article  CAS  PubMed  Google Scholar 

  48. Ransford RA, Langman MJ. Sulphasalazine and mesalazine: serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the Committee on Safety of Medicines. Gut. 2002;51:536–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elseviers MM, D’Haens G, Lerebours E, et al. Renal impairment in patients with inflammatory bowel disease: association with aminosalicylate therapy? Clin Nephrol. 2004;61:83–9.

    Article  CAS  PubMed  Google Scholar 

  50. Bir K, Herzenberg AM, Carette S. Azathioprine induced acute interstitial nephritis as the cause of rapidly progressive renal failure in a patient with Wegener’s granulomatosis. J Rheumatol. 2006;33:185–7.

    PubMed  Google Scholar 

  51. Meys E, Devogelaer JP, Geubel A, et al. Fever, hepatitis and acute interstitial nephritis in a patient with rheumatoid arthritis. Concurrent manifestations of azathioprine hypersensitivity. J Rheumatol. 1992;19:807–9.

    CAS  PubMed  Google Scholar 

  52. Stanton B, Caza T, Huang D, et al. Tubulointerstitial nephritis as the initial presentation of crohn’s disease and successful treatment with infliximab. ACG Case Rep J. 2017;4: e24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Neale TJ, Rüger BM, Macaulay H, et al. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am J Pathol. 1995;146:1444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Charles PJ, Smeenk RJ, De Jong J, et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum. 2000;43:2383–90.

    Article  CAS  PubMed  Google Scholar 

  55. Williams VL, Cohen PR. TNF alpha antagonist-induced lupus-like syndrome: report and review of the literature with implications for treatment with alternative TNF alpha antagonists. Int J Dermatol. 2011;50:619–25.

    Article  PubMed  Google Scholar 

  56. Pastore S, Naviglio S, Canuto A, et al. Serious adverse events associated with anti-tumor necrosis factor alpha agents in pediatric-onset inflammatory bowel disease and juvenile idiopathic arthritis in a real-life setting. Paediatr Drugs. 2018;20:165–71.

    Article  PubMed  Google Scholar 

  57. Becher B, Blain M, Giacomini PS, et al. Inhibition of Th1 polarization by soluble TNF receptor is dependent on antigen-presenting cell-derived IL-12. J Immunol. 1999;162:684–8.

    CAS  PubMed  Google Scholar 

  58. Prinz JC. Autoimmune-like syndromes during TNF blockade: does infection have a role? Nat Rev Rheumatol. 2011;7:429–34.

    Article  CAS  PubMed  Google Scholar 

  59. Bailly E, Von Tokarski F, Beau-Salinas F, et al. Interstitial nephritis secondary to vedolizumab treatment in crohn disease and safe rechallenge using steroids: a case report. Am J Kidney Dis. 2018;71:142–5.

    Article  PubMed  Google Scholar 

  60. Vegh Z, Macsai E, Lakatos L, et al. The incidence of glomerulonephritis in a population-based inception cohort of patients with inflammatory bowel disease. Dig Liver Dis. 2017;49:718–9.

    Article  PubMed  Google Scholar 

  61. Jang HM, Baek HS, Kim JE, et al. Renal involvement in children and adolescents with inflammatory bowel disease. Korean J Pediatr. 2018;61:327–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elaziz MMA, Fayed A. Patterns of renal involvement in a cohort of patients with inflammatory bowel disease in Egypt. Acta Gastroenterol Belg. 2018;81:381–5.

    CAS  PubMed  Google Scholar 

  63. Velciov S, Gluhovschi G, Sporea I, et al. Asymptomatic urinary anomalies, hematuria and proteinuria, in patients with inflammatory bowel disease. Preliminary study. Rom J Intern Med. 2011;49:113–20.

    PubMed  Google Scholar 

  64. Fraser JS, Muller AF, Smith DJ, et al. Renal tubular injury is present in acute inflammatory bowel disease prior to the introduction of drug therapy. Aliment Pharmacol Ther. 2001;15:1131–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kreisel W, Wolf LM, Grotz W, et al. Renal tubular damage: an extraintestinal manifestation of chronic inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1996;8:461–8.

    CAS  PubMed  Google Scholar 

  66. Herrlinger KR, Noftz MK, Fellermann K, et al. Minimal renal dysfunction in inflammatory bowel disease is related to disease activity but not to 5-ASA use. Aliment Pharmacol Ther. 2001;15:363–9.

    Article  CAS  PubMed  Google Scholar 

  67. Ambruzs JM, Walker PD, Larsen CP. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin J Am Soc Nephrol. 2014;9:265–70.

    Article  PubMed  Google Scholar 

  68. Zhao L, Ren G, Fan R, et al. Spectrum and prognosis of renal histopathological lesions in patients with inflammatory bowel disease: a cross-sectional study from a single center in China. Clin Exp Med. 2021. https://doi.org/10.1007/s10238-021-00766-0.

    Article  PubMed  Google Scholar 

  69. Joher N, Gosset C, Guerrot D, et al. IgA nephropathy in association with inflammatory bowel diseases: results from a national study and systematic literature review. Nephrol Dial Transplant. 2021:gfaa378.

  70. Kiryluk K, Li Y, Scolari F, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46:1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shi D, Zhong Z, Wang M, et al. Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet. 2020;65:241–9.

    Article  CAS  PubMed  Google Scholar 

  72. Toyoda H, Wang SJ, Yang HY, et al. Distinct associations of HLA class II genes with inflammatory bowel disease. Gastroenterology. 1993;104:741–8.

    Article  CAS  PubMed  Google Scholar 

  73. Freedman BI, Spray BJ, Heise ER. HLA associations in IgA nephropathy and focal and segmental glomerulosclerosis. Am J Kidney Dis. 1994;23:352–7.

    Article  CAS  PubMed  Google Scholar 

  74. Suárez-Fueyo A, Bradley SJ, Klatzmann D, et al. T cells and autoimmune kidney disease. Nat Rev Nephrol. 2017;13:329–43.

    Article  PubMed  CAS  Google Scholar 

  75. Coppo R. The pathogenetic potential of environmental antigens in IgA nephropathy. Am J Kidney Dis. 1988;12:420–4.

    Article  CAS  PubMed  Google Scholar 

  76. Oliveira DB. Membranous nephropathy: an IgG4-mediated disease. Lancet. 1998;351:670–1.

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Anders RA, Wu Q, et al. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. Clin Invest. 2004;113:826–35.

    Article  CAS  Google Scholar 

  78. Sattianayagam PT, Gillmore JD, Pinney JH, et al. Inflammatory bowel disease and systemic AA amyloidosis. Dig Dis Sci. 2013;58:1689–97.

    Article  CAS  PubMed  Google Scholar 

  79. Tosca Cuquerella J, Bosca-Watts MM, Anton Ausejo R, et al. Amyloidosis in inflammatory bowel disease: a systematic review of epidemiology, clinical features, and treatment. J Crohns Colitis. 2016;10:1245–53.

    Article  PubMed  Google Scholar 

  80. Sharma P, Aguilar R, Siddiqui OA, et al. Secondary systemic amyloidosis in inflammatory bowel disease: a nationwide analysis. Ann Gastroenterol. 2017;30:504–11.

    PubMed  PubMed Central  Google Scholar 

  81. Fausa O, Nygaard K, Elgjo K. Amyloidosis and Crohn’s disease. Scand J Gastroenterol. 1977;12:657–62.

    Article  CAS  PubMed  Google Scholar 

  82. Wester AL, Vatn MH, Fausa O. Secondary amyloidosis in inflammatory bowel disease: a study of 18 patients admitted to Rikshospitalet University Hospital, Oslo, from 1962 to 1998. Inflamm Bowel Dis. 2001;7:295–300.

    Article  CAS  PubMed  Google Scholar 

  83. Denis MA, Cosyns JP, Persu A, et al. Control of AA amyloidosis complicating Crohn’s disease: a clinico-pathological study. Eur J Clin Invest. 2013;43:292–301.

    Article  CAS  PubMed  Google Scholar 

  84. Serra I, Oller B, Mañosa M, et al. Systemic amyloidosis in inflammatory bowel disease: retrospective study on its prevalence, clinical presentation, and outcome. J Crohns Colitis. 2010;4:269–74.

    Article  PubMed  Google Scholar 

  85. Primas C, Novacek G, Schweiger K, et al. Renal insufficiency in IBD–prevalence and possible pathogenetic aspects. J Crohns Colitis. 2013;7:e630–4.

    Article  PubMed  Google Scholar 

  86. Lewis B, Mukewar S, Lopez R, et al. Frequency and risk factors of renal insufficiency in inflammatory bowel disease inpatients. Inflamm Bowel Dis. 2013;19:1846–51.

    PubMed  Google Scholar 

  87. Vajravelu RK, Copelovitch L, Osterman MT, et al. Inflammatory bowel diseases are associated with an increased risk for chronic kidney disease, which decreases with age. Clin Gastroenterol Hepatol. 2020;18:2262–8.

    Article  CAS  PubMed  Google Scholar 

  88. Park S, Chun J, Han KD, et al. Increased end-stage renal disease risk in patients with inflammatory bowel disease: A nationwide population-based study. World J Gastroenterol. 2018;24:4798–808.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lauritzen D, Andreassen BU, Heegaard NHH, et al. Pediatric inflammatory bowel diseases: should we be looking for kidney abnormalities? Inflamm Bowel Dis. 2018;24:2599–605.

    Article  PubMed  Google Scholar 

  90. Andrés-Jensen L, Jørgensen FS, Thorup J, et al. The outcome of antenatal ultrasound diagnosed anomalies of the kidney and urinary tract in a large Danish birth cohort. Arch Dis Child. 2016;101:819–24.

    Article  PubMed  Google Scholar 

  91. Wiesel A, Queisser-Luft A, Clementi M, et al. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48:131–44.

    Article  CAS  PubMed  Google Scholar 

  92. Pohl M, Bhatnagar V, Mendoza SA, et al. Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. Kidney Int. 2002;61:10–9.

    Article  PubMed  Google Scholar 

  93. Guillo L, D’Amico F, Achit H, et al. Kidney function monitoring to prevent 5-aminosalicylic acid nephrotoxicity: What the gastroenterologist should know. Dig Liver Dis. 2021;53:691–6.

    Article  CAS  PubMed  Google Scholar 

  94. Guillo L, Delanaye P, Flamant M, et al. Kidney function monitoring in inflammatory bowel disease: The MONITORED consensus. Dig Liver Dis. 2021;S1590–8658(21):00848–53.

    Google Scholar 

  95. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379:165–80.

    Article  PubMed  Google Scholar 

  96. Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2011;2013(3):368–71.

    Google Scholar 

Download references

Acknowledgements

No acknowledgement.

Author information

Authors and Affiliations

Authors

Contributions

Study concept, literature search and data analysis, and manuscript writing was performed by Karen van Hoeve. Data interpretation and manuscript critical revision was performed by Ilse Hoffman. All authors approved the final version of the article, including the authorship list.

Corresponding author

Correspondence to Karen van Hoeve.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 74 KB) Online Resource 1. Literature screening and selection

535_2022_1903_MOESM2_ESM.docx

Supplementary file2 (DOCX 55 KB) Online Resource 2. Clinical characteristics of IBD patients associated with glomerulonephritis or tubulointerstitial nephritis. Summarize of published case reports.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Hoeve, K., Hoffman, I. Renal manifestations in inflammatory bowel disease: a systematic review. J Gastroenterol 57, 619–629 (2022). https://doi.org/10.1007/s00535-022-01903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01903-6

Keywords

Navigation