Skip to main content

Advertisement

Log in

LncRNA n339260 functions in hepatocellular carcinoma progression via regulation of miRNA30e-5p/TP53INP1 expression

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Currently, the molecular mechanism of the interaction between lncRNAs and microRNAs (miRNAs) and the target of miRNAs in tumor vasculogenic mimicry (VM) formation have not been clarified. Our aim is to study the interaction between lncRNA n339260 and miRNA30e-5p in the formation of VM.

Methods

Animal xenografts were established, 104 hepatocellular carcinoma (HCC) patients’ frozen tissues were obtained and HCC cells in vitro were used to observe the role of n339260 in HCC progression.

Results

In vivo experiment showed lncRNA n339260 promoted tumor growth and VM formation. LncRNA n339260 and miRNA30e-5p were found to be associated with VM formation, metastasis and survival time in HCC patients. In vitro experiment showed that LncRNA n339260 could inhibit miRNA30e-5p expression and TP53INP1 was found to be the downstream targets of miRNA30e-5p. Snail, MMP2, MMP9, VE-cadherin, vimentin and N-cadherin overexpression and the downregulation of TP53INP1 and E-cadherin were observed in HCCLM3 and HepG2 cells overexpressing lncRNA n339260 or in cells with decreased expression of miRNA30e-5p.

Conclusion

LncRNA n339260 promotes the development of VM, and lncRNA n339260 may enhance Snail expression by decreasing the expression of miRNA30e-5p, thereby reducing TP53INP1 expression. Therefore, a potential lncRNA n339260- miRNA30e-5p- TP53INP1 regulatory axis was associated with HCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Figure. 6

Similar content being viewed by others

Abbreviations

EMT:

Epithelial–mesenchymal transition

HCC:

Hepatocellular carcinoma

IHC:

Immunohistochemical

lncRNA:

Long noncoding RNA

miRNA:

MicroRNA

VM:

Vasculogenic mimicry

References

  1. Wang Y, Zhou XY, Lu XY, et al. Involvement of the circular RNA/microRNA/glucose-6-phosphate dehydrogenase axis in the pathological mechanism of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2021;20:530–4.

    Article  CAS  PubMed  Google Scholar 

  2. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000;156:361–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun T, Sun BC, Zhao XL, et al. Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology. 2011;54:1690–706.

    Article  CAS  PubMed  Google Scholar 

  4. Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology. 2010;51:545–56.

    Article  CAS  PubMed  Google Scholar 

  5. Guzman G, Cotler SJ, Lin AY, et al. A pilot study of vasculogenic mimicry immunohistochemical expression in hepatocellular carcinoma. Arch Pathol Lab Med. 2007;131:1776–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shao B, Zhao X, Liu T, et al. LOXL2 promotes vasculogenic mimicry and tumour aggressiveness in hepatocellular carcinoma. J Cell Mol Med. 2019;23:1363–74.

    Article  CAS  PubMed  Google Scholar 

  7. Li X, Sun B, Zhao X, et al. Function of BMP4 in the Formation of vasculogenic mimicry in hepatocellular carcinoma. J Cancer. 2020;11:2560–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engreitz JM, Pandya-Jones A, McDonel P, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 2013;341:1237973.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kanduri C. Long noncoding RNAs: lessons from genomic imprinting. Biochem Biophys Acta. 2016;1859:102–11.

    CAS  PubMed  Google Scholar 

  10. Ard R, Tong P, Allshire RC. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nat Commun. 2014;5:5576.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Wang Z, Shi H, et al. HBXIP and LSD1 Scaffolded by lncrna hotair mediate transcriptional activation by c-myc. Can Res. 2016;76:293–304.

    Article  CAS  Google Scholar 

  12. Sun M, Nie F, Wang Y, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors prc2, lsd1, and dnmt1. Can Res. 2016;76:6299–310.

    Article  CAS  Google Scholar 

  13. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  Google Scholar 

  14. Huan L, Liang LH, He XH. Role of microRNAs in inflammation-associated liver cancer. Cancer Biol Med. 2016;13:407–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu W, Wang T, Yang Y, et al. CPuORF correlates with miRNA responsive elements on protein evolutionary rates. Biochem Biophys Res Commun. 2014;452:66–71.

    Article  CAS  PubMed  Google Scholar 

  16. Xiao M, Li J, Li W, et al. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14:1326–34.

    Article  PubMed  Google Scholar 

  17. Uva P, Cossu-Rocca P, Loi F, et al. miRNA-135b contributes to triple negative breast cancer molecular heterogeneity: different expression profile in basal-like versus non-basal-like phenotypes. Int J Med Sci. 2018;15:536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang V, Place RF, Portnoy V, et al. Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2012;40:1695–707.

    Article  CAS  PubMed  Google Scholar 

  19. Chen S, Deng X, Sheng H, et al. Noncoding RNAs in pediatric brain tumors: molecular functions and pathological implications. Mol ther Nucl acids. 2021;26:417–31.

    Article  CAS  Google Scholar 

  20. Zhou H, Jia X, Yang F, et al. Long noncoding RNA SATB1-AS1 contributes to the chemotherapy resistance through the microRNA-580/ 2’-5’-oligoadenylate synthetase 2 axis in acute myeloid leukemia. Bioengineered. 2021;12:6403–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yin Y, Yang W, Zhang L, et al. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma. Hematology. 2021;26:160–9.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang G, Yu H, Li Z, et al. lncRNA cytoskeleton regulator reduces nonsmall cell lung cancer radiosensitivity by downregulating miRNA206 and activating prothymosin alpha. Int J Oncol. 2021;59:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raei N, Safaralizadeh R, Hesseinpourfeizi M, et al. Crosstalk between lncRNAs and miRNAs in gastrointestinal cancer drug resistance. Life Sci. 2021;284: 119933.

    Article  CAS  PubMed  Google Scholar 

  24. Babaei G, Raei N, Toofani Milani A, et al. The emerging role of miR-200 family in metastasis: focus on EMT, CSCs, angiogenesis, and anoikis. Mol Biol Rep. 2021;48:6935–47.

    Article  CAS  PubMed  Google Scholar 

  25. Mirzaei S, Saebfar H, Gholami MH, et al. MicroRNAs regulating SOX2 in cancer progression and therapy response. Expert Rev Mol Med. 2021;23: e13.

    Article  CAS  PubMed  Google Scholar 

  26. Crudele F, Bianchi N, Astolfi A, et al. The Molecular Networks of microRNAs and their targets in the drug resistance of colon carcinoma. Cancers. 2021;13:4355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao X, Sun B, Liu T, et al. Long noncoding RNA n339260 promotes vasculogenic mimicry and cancer stem cell development in hepatocellular carcinoma. Cancer Sci. 2018;109:3197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Sun H, Zhang D, et al. TP53INP1 inhibits hypoxia-induced vasculogenic mimicry formation via the ROS/snail signalling axis in breast cancer. J Cell Mol Med. 2018;22:3475–88.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun B, Zhang D, Zhao N, et al. Epithelial-to-endothelial transition and cancer stem cells: two cornerstones of vasculogenic mimicry in malignant tumors. Oncotarget. 2017;8:30502–10.

    Article  PubMed  Google Scholar 

  30. Hendrix MJ, Seftor EA, Meltzer PS, et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA. 2001;98:8018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li W, Zong S, Shi Q, et al. Hypoxia-induced vasculogenic mimicry formation in human colorectal cancer cells: Involvement of HIF-1a, Claudin-4, and E-cadherin and Vimentin. Sci Rep. 2016;6:37534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai J, Yeh S, Qiu X, et al. TR4 nuclear receptor promotes clear cell renal cell carcinoma (ccRCC) vasculogenic mimicry (VM) formation and metastasis via altering the miR490-3p/vimentin signals. Oncogene. 2018;37:5901–12.

    Article  CAS  PubMed  Google Scholar 

  33. Bassiouni W, Ali MAM, Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288:7162–82.

    Article  CAS  PubMed  Google Scholar 

  34. Qin X, Li C, Guo T, et al. Upregulation of DARS2 by HBV promotes hepatocarcinogenesis through the miR-30e-5p/MAPK/NFAT5 pathway. J exp clin cancer res:CR. 2017;36:148.

    Article  PubMed  Google Scholar 

  35. Jiang F, Liu T, He Y, et al. MiR-125b promotes proliferation and migration of type II endometrial carcinoma cells through targeting TP53INP1 tumor suppressor in vitro and in vivo. BMC Cancer. 2011;11:425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14:79–89.

    Article  CAS  PubMed  Google Scholar 

  37. Mali AV, Joshi AA, Hegde MV, et al. Enterolactone modulates the ERK/NF-kappaB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-beta-induced epithelial-mesenchymal transition. Cancer Biol Med. 2018;15:137–56.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu Q, Qiao L, Liang N, et al. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med. 2016;20:1761–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zheng N, Zhang S, Wu W, et al. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res. 2021;166: 105507.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the following grants: The National Natural Science Foundation of China (No. 81572872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Zhao.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

535_2022_1901_MOESM1_ESM.tif

Figure S1. (A) The wound healing experiment of lncRNA n339260 upregulated (n339260) and downregulated (n339260-SH) HCC cells. (B) The wound healing experiment of miRNA30e-5p upregulated (30e-5p) and downregulated (inhibitor) HCC cells. (TIF 12459 KB)

535_2022_1901_MOESM2_ESM.tif

Figure S2. (A) The wound healing experiment of TP53INP1 upregulated (TP53INP1) and downregulated (TP53INP1-SH) HCC cells. (B) The wound healing experiment of n339260 and miRNA30e-5p co-transfected HCC cells in rescue experiment. (TIF 3682 KB)

535_2022_1901_MOESM3_ESM.tif

Figure S3. (A) The wound healing experiment of n339260 and miRNA30e-5p co-transfected HCC cells in rescue experiment. (B) The migration experiment, invasion experiment and three-dimensional VM tubules of n339260 and miRNA30e-5p co-transfected HCC cells in rescue experiment. (C) Western blots of TP53INP1, VM marker (MMP2, MMP9 and VE-cadherin) and EMT indexes (snail, E-cadherin and vimentin) expression in lncRNA n339260 and miRNA30e-5p co-transfected HCC cells in rescue experiment. (D) Luciferase reporter gene experiment of miRNA30e-5p and TP53INP1 in 293T cells. Error bars represent the mean ± SD of three independent experiments. (TIF 1117 KB)

535_2022_1901_MOESM4_ESM.tif

Figure S4. (A) The migration experiment, invasion experiment and three-dimensional VM tubules of n339260 and miRNA30e-5p co-transfected HCC cells in rescue experiment. (B) The wound healing experiment of miRNA30e-5p and TP53INP1 co-transfected HCC cells in rescue experiment. (TIF 3548 KB)

535_2022_1901_MOESM5_ESM.tif

Figure S5. (A) The wound healing experiment of miRNA30e-5p and TP53INP1 co-transfected HCC cells in rescue experiment. (B) The migration experiment, invasion experiment and three-dimensional VM tubules of miRNA30e-5p and TP53INP1 co-transfected HCC cells in rescue experiment. (C) Western blots of VM marker (MMP2, MMP9 and VE-cadherin) and EMT indexes (snail, E-cadherin and vimentin) expression of miRNA30e-5p and TP53INP1 co-transfected HCC cells in rescue experiment. Error bars represent the mean ± SD of three independent experiments. (TIF 4104 KB)

535_2022_1901_MOESM6_ESM.tif

Figure S6. (A) The migration experiment, invasion experiment and three-dimensional VM tubules of miRNA30e-5p and TP53INP1 co-transfected HCC cells in rescue experiment. (TIF 5428 KB)

Supplementary file7 (DOC 60 KB)

Supplementary file8 (DOC 46 KB)

Supplementary file9 (DOC 44 KB)

Supplementary file10 (RAR 7786 KB)

Supplementary file11 (RAR 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Liao, S., Mo, J. et al. LncRNA n339260 functions in hepatocellular carcinoma progression via regulation of miRNA30e-5p/TP53INP1 expression. J Gastroenterol 57, 784–797 (2022). https://doi.org/10.1007/s00535-022-01901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01901-8

Keywords

Navigation