Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15:19–33.
CAS
PubMed
Article
Google Scholar
Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.
CAS
PubMed
Article
Google Scholar
van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136:903–12.
PubMed
Article
CAS
Google Scholar
Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol. 2011;29:1120–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011;476:293–7.
PubMed
Article
CAS
Google Scholar
Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–20.
CAS
PubMed
PubMed Central
Article
Google Scholar
Munoz J, Stange DE, Schepers AG, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA. 2012;109:466–71.
CAS
PubMed
Article
Google Scholar
Lopez-Arribillaga E, Rodilla V, Pellegrinet L, et al. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 2015;142:41–50.
CAS
PubMed
Article
Google Scholar
Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.
CAS
PubMed
Article
Google Scholar
Pietersen AM, Evers B, Prasad AA, et al. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol. 2008;18:1094–9.
CAS
PubMed
Article
Google Scholar
Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.
CAS
PubMed
Article
Google Scholar
Molofsky AV, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kreso A, van Galen P, Pedley NM, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29–36.
CAS
PubMed
Article
Google Scholar
Rothenberg ME, Nusse Y, Kalisky T, et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology. 2012;142:1195–205.
CAS
PubMed
Article
Google Scholar
Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE. 2007. https://doi.org/10.1126/stke.3672007re1.
Article
PubMed
Google Scholar
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016;17:719–32.
CAS
PubMed
Article
Google Scholar
Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 2014;15:565–76.
CAS
PubMed
PubMed Central
Article
Google Scholar
Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.
CAS
PubMed
PubMed Central
Article
Google Scholar
Isobe T, Hisamori S, Hogan DJ, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife. 2014;3:e01977.
PubMed Central
Article
Google Scholar
Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12:602–15.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing ‘stemness.’ Nature. 2008;452:225–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Song SJ, Ito K, Ala U, et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell. 2013;13:87–101.
CAS
PubMed
PubMed Central
Article
Google Scholar
Song SJ, Poliseno L, Song MS, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154:311–24.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.
CAS
PubMed
Article
Google Scholar
Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.
CAS
PubMed
Article
Google Scholar
Mukohyama J, Isobe T, Hu Q, et al. miR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells. Cancer Res. 2019;79:5151–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1:581–5.
CAS
PubMed
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.
CAS
PubMed
Article
Google Scholar
Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.
PubMed
PubMed Central
Article
CAS
Google Scholar
Lao K, Xu NL, Yeung V, et al. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun. 2006;343:85–9.
CAS
PubMed
Article
Google Scholar
Tang F, Hajkova P, Barton SC, et al. 220-plex microRNA expression profile of a single cell. Nat Protoc. 2006;1:1154–9.
CAS
PubMed
Article
Google Scholar
Zheng G, Wang H, Zhang X, et al. Identification and validation of reference genes for qPCR detection of serum microRNAs in colorectal adenocarcinoma patients. PLoS ONE. 2013;8:e83025.
PubMed
PubMed Central
Article
CAS
Google Scholar
Chu A, Robertson G, Brooks D, et al. Large-scale profiling of microRNAs for the cancer genome atlas. Nucleic Acids Res. 2016;44:e3.
PubMed
Article
CAS
Google Scholar
Sahoo D, Dill DL, Tibshirani R, et al. Extracting binary signals from microarray time-course data. Nucleic Acids Res. 2007;35:3705–12.
CAS
PubMed
PubMed Central
Article
Google Scholar
Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
PubMed Central
Article
Google Scholar
Gennarino VA, D’Angelo G, Dharmalingam G, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22:1163–72.
CAS
PubMed
PubMed Central
Article
Google Scholar
Welm BE, Dijkgraaf GJ, Bledau AS, et al. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell. 2008;2:90–102.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1:241–5.
CAS
PubMed
Article
Google Scholar
Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.
CAS
PubMed
Article
Google Scholar
Shimono Y, Mukohyama J, Isobe T, et al. Organoid culture of human cancer stem cells. Methods Mol Biol. 2019;1576:23–31.
CAS
PubMed
Article
Google Scholar
Ono A, Hattori S, Kariya R, et al. Comparative study of human hematopoietic cell engraftment into BALB/c and C57BL/6 strain of rag-2/jak3 double-deficient mice. J Biomed Biotechnol. 2011;2011:539748.
PubMed
PubMed Central
Article
Google Scholar
Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154:515–23.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.
CAS
PubMed
Article
Google Scholar
Pourjafar M, Samadi P, Karami M, et al. Assessment of clinicopathological and prognostic relevance of BMI-1 in patients with colorectal cancer: a meta-analysis. Biotechnol Appl Biochem. 2021;68:1313–22.
CAS
PubMed
Google Scholar
Bahar Halpern K, Massalha H, Zwick RK, et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat Commun. 2020;11:e1936.
Article
CAS
Google Scholar
Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia. 2013;15:180–91.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang H, Liu H, Bi H. MicroRNA-345 inhibits hepatocellular carcinoma metastasis by inhibiting YAP1. Oncol Rep. 2017;38:843–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016;13:324–37.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pekow J, Hutchison AL, Meckel K, et al. miR-4728-3p functions as a tumor suppressor in ulcerative colitis-associated colorectal neoplasia through regulation of focal adhesion signaling. Inflamm Bowel Dis. 2017;23:1328–37.
PubMed
Article
Google Scholar
Cantini L, Isella C, Petti C, et al. MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes. Nature Commun. 2015;6:e8878.
Article
CAS
Google Scholar
Fessler E, Jansen M, De Sousa EMF, et al. A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene. 2016;35:6026–37.
CAS
PubMed
PubMed Central
Article
Google Scholar