Skip to main content

Upregulation of BMI1-suppressor miRNAs (miR-200c, miR-203) during terminal differentiation of colon epithelial cells

Abstract

Background

MicroRNAs (miRNAs) are key regulators of stem cell functions, including self-renewal and differentiation. In this study, we aimed to identify miRNAs that are upregulated during terminal differentiation in the human colon epithelium, and elucidate their role in the mechanistic control of stem cell properties.

Methods

Bottom-of-the-crypt” (EPCAM+/CD44+/CD66alow) and “top-of-the-crypt” (EPCAM+/CD44neg/CD66ahigh) epithelial cells from 8 primary colon specimens (6 human, 2 murine) were purified by flow cytometry and analyzed for differential expression of 335 miRNAs. The miRNAs displaying the highest upregulation in “top-of-the-crypt” (terminally differentiated) epithelial cells were tested for positive correlation and association with survival outcomes in a colon cancer RNA-seq database (n = 439 patients). The two miRNAs with the strongest “top-of-the-crypt” expression profile were evaluated for capacity to downregulate self-renewal effectors and inhibit in vitro proliferation of colon cancer cells, in vitro organoid formation by normal colon epithelial cells and in vivo tumorigenicity by patient-derived xenografts (PDX).

Results

Six miRNAs (miR-200a, miR-200b, miR-200c, miR-203, miR-210, miR-345) were upregulated in “top-of-the-crypt” cells and positively correlated in expression among colon carcinomas. Overexpression of the three miRNAs with the highest inter-correlation coefficients (miR-200a, miR-200b, miR-200c) associated with improved survival. The top two over-expressed miRNAs (miR-200c, miR-203) cooperated synergistically in suppressing expression of BMI1, a key regulator of self-renewal in stem cell populations, and in inhibiting proliferation, organoid-formation and tumorigenicity of colon epithelial cells.

Conclusion

In the colon epithelium, terminal differentiation associates with the coordinated upregulation of miR-200c and miR-203, which cooperate to suppress BMI1 and disable the expansion capacity of epithelial cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ASCL2:

Achaete-scute family basic helix-loop-helix (bHLH) transcription factor 2

AXIN2:

Axin 2

BMI1:

B-lymphoma Moloney murine leukemia virus (Mo-MLV) insertion region 1 proto-oncogene, polycomb ring finger

CD44:

Cluster of differentiation 44 antigen

CD66a:

Cluster of differentiation 66a antigen

CEACAM1:

Carcinoembryonic antigen (CEA) cell adhesion molecule 1

CRC:

Colorectal carcinoma

CSC:

Cancer stem cells

EMT:

Epithelial-to-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

EPHB2:

Ephrin (EPH) receptor B2

FACS:

Fluorescence activated cell sorting

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

KRT20:

Keratin 20

LGR5:

Leucine-rich repeat-containing G protein-coupled receptor 5

miRNA:

MicroRNA

mRNA:

Messenger RNA

PDX:

Patient-derived xenograft

RNU6B:

U6 small nuclear RNA 6

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

3D:

Three-dimensional

3ʹUTR:

3ʹ Untranslated region

ZEB1:

Zinc finger E-box binding homeobox factor 1

ZEB2:

Zinc finger E-box binding homeobox factor 2

References

  1. Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol. 2014;15:19–33.

    CAS  PubMed  Article  Google Scholar 

  2. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    CAS  PubMed  Article  Google Scholar 

  3. van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136:903–12.

    PubMed  Article  CAS  Google Scholar 

  4. Dalerba P, Kalisky T, Sahoo D, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol. 2011;29:1120–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. de Lau W, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature. 2011;476:293–7.

    PubMed  Article  CAS  Google Scholar 

  6. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Munoz J, Stange DE, Schepers AG, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA. 2012;109:466–71.

    CAS  PubMed  Article  Google Scholar 

  9. Lopez-Arribillaga E, Rodilla V, Pellegrinet L, et al. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development. 2015;142:41–50.

    CAS  PubMed  Article  Google Scholar 

  10. Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    CAS  PubMed  Article  Google Scholar 

  11. Pietersen AM, Evers B, Prasad AA, et al. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol. 2008;18:1094–9.

    CAS  PubMed  Article  Google Scholar 

  12. Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003;423:255–60.

    CAS  PubMed  Article  Google Scholar 

  13. Molofsky AV, Pardal R, Iwashita T, et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425:962–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Kreso A, van Galen P, Pedley NM, et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med. 2014;20:29–36.

    CAS  PubMed  Article  Google Scholar 

  15. Rothenberg ME, Nusse Y, Kalisky T, et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology. 2012;142:1195–205.

    CAS  PubMed  Article  Google Scholar 

  16. Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci STKE. 2007. https://doi.org/10.1126/stke.3672007re1.

    Article  PubMed  Google Scholar 

  17. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet. 2016;17:719–32.

    CAS  PubMed  Article  Google Scholar 

  18. Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 2014;15:565–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Isobe T, Hisamori S, Hogan DJ, et al. miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife. 2014;3:e01977.

    PubMed Central  Article  Google Scholar 

  22. Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12:602–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Yi R, Poy MN, Stoffel M, et al. A skin microRNA promotes differentiation by repressing ‘stemness.’ Nature. 2008;452:225–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Song SJ, Ito K, Ala U, et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation. Cell Stem Cell. 2013;13:87–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Song SJ, Poliseno L, Song MS, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154:311–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    CAS  PubMed  Article  Google Scholar 

  27. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 2008;9:582–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    CAS  PubMed  Article  Google Scholar 

  29. Mukohyama J, Isobe T, Hu Q, et al. miR-221 targets QKI to enhance the tumorigenic capacity of human colorectal cancer stem cells. Cancer Res. 2019;79:5151–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104:10158–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1:581–5.

    CAS  PubMed  Article  Google Scholar 

  32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.

    CAS  PubMed  Article  Google Scholar 

  33. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Lao K, Xu NL, Yeung V, et al. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun. 2006;343:85–9.

    CAS  PubMed  Article  Google Scholar 

  35. Tang F, Hajkova P, Barton SC, et al. 220-plex microRNA expression profile of a single cell. Nat Protoc. 2006;1:1154–9.

    CAS  PubMed  Article  Google Scholar 

  36. Zheng G, Wang H, Zhang X, et al. Identification and validation of reference genes for qPCR detection of serum microRNAs in colorectal adenocarcinoma patients. PLoS ONE. 2013;8:e83025.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Chu A, Robertson G, Brooks D, et al. Large-scale profiling of microRNAs for the cancer genome atlas. Nucleic Acids Res. 2016;44:e3.

    PubMed  Article  CAS  Google Scholar 

  38. Sahoo D, Dill DL, Tibshirani R, et al. Extracting binary signals from microarray time-course data. Nucleic Acids Res. 2007;35:3705–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.

    PubMed Central  Article  Google Scholar 

  40. Gennarino VA, D’Angelo G, Dharmalingam G, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22:1163–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Welm BE, Dijkgraaf GJ, Bledau AS, et al. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell. 2008;2:90–102.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1:241–5.

    CAS  PubMed  Article  Google Scholar 

  43. Sato T, Stange DE, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    CAS  PubMed  Article  Google Scholar 

  44. Shimono Y, Mukohyama J, Isobe T, et al. Organoid culture of human cancer stem cells. Methods Mol Biol. 2019;1576:23–31.

    CAS  PubMed  Article  Google Scholar 

  45. Ono A, Hattori S, Kariya R, et al. Comparative study of human hematopoietic cell engraftment into BALB/c and C57BL/6 strain of rag-2/jak3 double-deficient mice. J Biomed Biotechnol. 2011;2011:539748.

    PubMed  PubMed Central  Article  Google Scholar 

  46. Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154:515–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.

    CAS  PubMed  Article  Google Scholar 

  48. Pourjafar M, Samadi P, Karami M, et al. Assessment of clinicopathological and prognostic relevance of BMI-1 in patients with colorectal cancer: a meta-analysis. Biotechnol Appl Biochem. 2021;68:1313–22.

    CAS  PubMed  Google Scholar 

  49. Bahar Halpern K, Massalha H, Zwick RK, et al. Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat Commun. 2020;11:e1936.

    Article  CAS  Google Scholar 

  50. Paterson EL, Kazenwadel J, Bert AG, et al. Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression. Neoplasia. 2013;15:180–91.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Zhang H, Liu H, Bi H. MicroRNA-345 inhibits hepatocellular carcinoma metastasis by inhibiting YAP1. Oncol Rep. 2017;38:843–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol. 2016;13:324–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Pekow J, Hutchison AL, Meckel K, et al. miR-4728-3p functions as a tumor suppressor in ulcerative colitis-associated colorectal neoplasia through regulation of focal adhesion signaling. Inflamm Bowel Dis. 2017;23:1328–37.

    PubMed  Article  Google Scholar 

  54. Cantini L, Isella C, Petti C, et al. MicroRNA-mRNA interactions underlying colorectal cancer molecular subtypes. Nature Commun. 2015;6:e8878.

    Article  CAS  Google Scholar 

  55. Fessler E, Jansen M, De Sousa EMF, et al. A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene. 2016;35:6026–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Michael F. Clarke, MD (Institute for Stem Cell Biology and Regenerative Medicine, Stanford University) for his continuing mentorship and invaluable scientific insights. We thank Dr. Seetha V. Srinivasan (Herbert Irving Comprehensive Cancer Center, Columbia University) for editorial assistance during the preparation of this manuscript. We thank Yusuke Akama and Hiromi Yamazaki (TechnoPro Inc., Fujita Health University) and Hiroaki Sakai (Fujita Health University) for exceptional technical assistance. This work was supported by: (1) the Japan Society for the Promotion of Science (JSPS), through a Research Fellowship for Young Scientists (to Shigeo Hisamori), an Overseas Research Fellowship (to Junko Mukohyama) and the Grants-in-Aid for Scientific Research (KAKENHI) program, with specific regard to grants 17K16555 (to J.M.), 15K14381 (to Yohei Shimono), 18K07231 (to Y.S.), 19K09106 (to Y.S.) and 21H02769 (to Y.S.); (2) the Japan-Belgium Research Cooperative Program (to Y.S.); (3) a post-doctoral fellowship from the Uehara Memorial Foundation (to J.M.); (4) a post-doctoral scholarship from The Cell Science Research Foundation (to J.M.); (5) the Empire State Institutional Training Program (DOH01-C30291GG-3450000) of the New York State Stem Cell Science (NYSTEM) agency (to J.M.); (6) a grant from the Princess Takamatsu Cancer Research Fund (to Y.S.); (7) a Grant from Fujita Health University (to Y.S.); (8) an Extramural Collaborative Research Grant from the Cancer Research Institute of Kanazawa University (to Y.S.); (9) a Grant from the Japan Association for Development of Community Medicine (to T.I.); (10) a BD Biosciences 2011 Stem Cell Research Grant (to Piero Dalerba); (11) a 2016 Runyon-Rachleff Innovator Award (DRR-44-16) from the Damon Runyon Cancer Research Foundation (to P.D.); 11) a 2017 Schaefer Research Scholarship from the Vagelos College of Physicians and Surgeons (VP&S) of Columbia University (to P.D.); (12) NIH/NIDDK Grant K08-DK097181 (to Michael E. Rothenberg), NIH/NCI Grant R00-CA151673 (to Debashis Sahoo), NIH/NIGMS Grant R01-GM138385 (to D.S.), NIH/NIDCR Grant R01-DE028961 (to P.D.), and NIH/NINDS Grant R01-NS109858 (to Vincenzo A. Gennarino); (13) the Paul A. Marks Scholar Program of the College of Physicians and Surgeons (VP&S) of Columbia University (to V.A.G.): and (14) the Promotion and Mutual Aid Corporation for Private Schools of Japan (to Y.S.). Research reported in this publication was supported in part through NIH/NCI Cancer Center Support Grant P30-CA013696. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: SH, JM, SK, TH, MER, PD, YS. Acquisition of data: SH, JM, SK, TH, MER, TI, MM, XQ, DMJ, DQ, VAG, DS, PD, YS. Analysis and interpretation of data: SH, JM, SK, MER, TI, LEVS, KL, NA, YK, VAG, DS, PD, YS. Drafting of the manuscript: SH, JM, LEVS, PD, YS. Statistical analysis: SH, JM, SK, TH, MM, TI, LEVS, VAG, DS, PD, YS. Obtained funding: SH, JM, PD, YS. Technical or material support: SH, JM, SK, MER, TI, LEVS, DMJ, DQ, KL, YK, PD, YS. Study supervision: PD, YS.

Corresponding authors

Correspondence to Piero Dalerba or Yohei Shimono.

Ethics declarations

Conflict of interest

Yohei Shimono is co-inventor on a patent application owned by Stanford University (US-20110021607), describing the use of miRNAs, including miR-200c, as biomarkers for the identification and therapeutic targeting of cancer stem cells. Yohei Shimono holds a financial relationship with a pharmaceutical company that might be considered relevant to this study: Quanticel Pharmaceuticals, now a fully owned subsidiary of Celgene and Bristol Myers Squibb (patent royalties, stock ownership). Piero Dalerba is co-inventor on patents and patent applications owned by the University of Michigan (US-7723112, US-20140030786) and Stanford University (US-9329170, US-09850483) and describing the use of EpCAM, CD44 and CD66a/CEACAM1 as bio-markers for the identification and differential purification of different subsets of colon epithelial cells. Piero Dalerba holds financial relationships with pharmaceutical and biotechnological companies that might be considered relevant to this study, including relationships with: Oncomed Pharmaceuticals, now a fully owned subsidiary of the Mereo BioPharma Group (patent royalties), Quanticel Pharmaceuticals, now a fully owned subsidiary of Celgene and Bristol Myers Squibb (patent royalties, stock ownership), Forty Seven Inc., now a fully owned subsidiary of Gilead Sciences Inc. (patent royalties, stock ownership), Amgen (stock ownership), Alexion Pharmaceuticals Inc. (employment of an immediate family member, stock ownership), AstraZeneca plc (stock ownership), Eli Lilly and Company (stock ownership), Merck & Co Inc. (stock ownership) and Pfizer Inc. (stock ownership). Piero Dalerba received a grant from BD Biosciences. Piero Dalerba received an honorarium from the Samsung Medical Center to give a scientific lecture. Michael E. Rothenberg is co-inventor on a patent application owned by Stanford University (US-20130225435), describing the use of CEACAM1/CD66a as bio-marker for the identification and differential purification of different subsets of colon epithelial cells, and is currently an employee of Genentech, now a fully owned subsidiary of Roche Holding AG. Kaiqin Lao was an employee of Thermo Fisher Scientific, which commercializes some of the reagents used in this study for the analysis of miRNA expression levels, and currently serves as the chief executive officer (CEO) of X Gen US. Shigeo Hisamori, Junko Mukohyama, Taichi Isobe, Luis E. Valencia Salazar, Xin Qian, Darius M. Johnston, Dalong Qian, Yoshihiro Kakeji, Vincenzo A. Gennarino and Debashis Sahoo disclose no conflicts of interest considered relevant to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file4 (AVI 6692 KB)

Supplementary file5 (AVI 6174 KB)

Supplementary file6 (AVI 5637 KB)

Supplementary file7 (AVI 5224 KB)

Supplementary file8 (AVI 8315 KB)

Supplementary file9 (AVI 7645 KB)

Supplementary file10 (AVI 7277 KB)

Supplementary file11 (AVI 7207 KB)

Supplementary file1 (PDF 356 KB)

Supplementary file2 (PDF 245 KB)

Supplementary file3 (PDF 235 KB)

Supplementary file12 (PDF 573 KB)

Supplementary file13 (PDF 223 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hisamori, S., Mukohyama, J., Koul, S. et al. Upregulation of BMI1-suppressor miRNAs (miR-200c, miR-203) during terminal differentiation of colon epithelial cells. J Gastroenterol 57, 407–422 (2022). https://doi.org/10.1007/s00535-022-01865-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-022-01865-9

Keywords

  • miRNA
  • Colon
  • Cell differentiation
  • BMI1
  • Tumor-suppressor