Skip to main content
Log in

Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: an expert review

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide, including in Japan. The Japanese Society of Gastroenterology (JSGE) and the Japanese Society of Hepatology (JSH) have established the Japanese NAFLD/NASH guidelines in 2014 and revised these guidelines in 2020. As described in these guidelines, weight reduction by diet and/or exercise therapy is important for the treatment of NAFLD patients. The I148M single nucleotide polymorphism (rs738409 C > G) of PNPLA3 (patatin-like phospholipase domain-containing 3 protein) is widely known to be associated with the occurrence and progression of NAFLD. In the Japanese, the ratio of PNPLA3 gene polymorphisms found is approximately 20%, which is higher than that found in Westerners. In addition, the ratio of lean NAFLD patients is also higher in Japan than in Western countries. Therefore, the method for lifestyle guidance for the NAFLD patients in Japan would be different from that for the people in Western countries. The problems in the treatment of NAFLD patients include alcohol consumption and sarcopenia. Therefore, guidelines that can help clinicians treat Japanese patients with NAFLD are needed. In this expert review, we summarize evidence-based interventions for lifestyle modification (diet, exercise, alcohol, and sarcopenia) for the treatment of patients with NAFLD, especially from Japan and Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third national health and nutrition examination survey. JAMA. 2002;287:356–9.

    PubMed  Google Scholar 

  2. Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology. 2002;123:134–40.

    PubMed  Google Scholar 

  3. Simon TG, Roelstraete B, Khalili H, et al. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021;70:1375–82.

    PubMed  Google Scholar 

  4. Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.

    PubMed  Google Scholar 

  5. Chitturi S, Farrell GC, Hashimoto E, et al. Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J Gastroenterol Hepatol. 2007;22:778–87.

    PubMed  Google Scholar 

  6. Eguchi Y, Hyogo H, Ono M, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol. 2012;47:586–95.

    CAS  PubMed  Google Scholar 

  7. Carlsson B, Lindén D, Brolén G, et al. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2020;51:1305–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawaguchi T, Sumida Y, Umemura A, et al. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLOS ONE. 2012;7:e38322.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seko Y, Sumida Y, Tanaka S, et al. Development of hepatocellular carcinoma in Japanese patients with biopsy-proven non-alcoholic fatty liver disease: Association between PNPLA3 genotype and hepatocarcinogenesis/fibrosis progression. Hepatol Res. 2017;47:1083–92.

    CAS  PubMed  Google Scholar 

  11. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2011;53:1883–94.

    CAS  Google Scholar 

  12. Nishioji K, Mochizuki N, Kobayashi M, et al. The impact of pnpla3 rs738409 genetic polymorphism and weight gain ≥10 kg after age 20 on non-alcoholic fatty liver disease in non-obese japanese individuals. PLOS ONE. 2015;10:e0140427.

    PubMed  PubMed Central  Google Scholar 

  13. Kawaguchi T, Shima T, Mizuno M, et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers. PLOS ONE. 2018;13:e0185490.

    PubMed  PubMed Central  Google Scholar 

  14. Watanabe S, Hashimoto E, Ikejima K, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol. 2015;50:364–77.

    PubMed  Google Scholar 

  15. Watanabe S, Hashimoto E, Ikejima K, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatol Res. 2015;45:363–77.

    PubMed  Google Scholar 

  16. Tokushige K, Ikejima K, Ono M, et al. Evidence-based clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. J Gastroenterol. 2020. https://doi.org/10.1007/s00535-021-01796-x.

    Article  PubMed  Google Scholar 

  17. Younossi ZM, Corey KE, Lim JK. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology. 2021;160:912–8.

    PubMed  Google Scholar 

  18. Kawaguchi T, Shiba N, Maeda T, et al. Hybrid training of voluntary and electrical muscle contractions reduces steatosis, insulin resistance, and IL-6 levels in patients with NAFLD: a pilot study. J Gastroenterol. 2011;46:746–57.

    CAS  PubMed  Google Scholar 

  19. Hashida R, Kawaguchi T, Bekki M, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: a systematic review. J Hepatol. 2017;66:142–52.

    PubMed  Google Scholar 

  20. Wang RT, Koretz RL, Yee HF Jr. Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med. 2003;115:554–9.

    PubMed  Google Scholar 

  21. Haufe S, Engeli S, Kast P, et al. Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology. 2011;53:1504–14.

    CAS  PubMed  Google Scholar 

  22. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–78.

    PubMed  Google Scholar 

  23. Oza N, Eguchi Y, Mizuta T, et al. A pilot trial of body weight reduction for nonalcoholic fatty liver disease with a home-based lifestyle modification intervention delivered in collaboration with interdisciplinary medical staff. J Gastroenterol. 2009;44:1203–8.

    PubMed  Google Scholar 

  24. Wong VW, Wong GL, Chan RS, et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 2018;69:1349–56.

    PubMed  Google Scholar 

  25. Umemura S, Arima H, Arima S, et al. The Japanese society of hypertension guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  26. Kinoshita M, Yokote K, Arai H, et al. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J Atheroscler Thromb. 2018;25:846–984.

    PubMed  PubMed Central  Google Scholar 

  27. Araki E, Goto A, Kondo T, et al. Japanese clinical practice guideline for diabetes 2019. Diabetol Int. 2020;11:165–223.

    PubMed  PubMed Central  Google Scholar 

  28. Promrat K, Kleiner DE, Niemeier HM, et al. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology. 2010;51:121–9.

    CAS  PubMed  Google Scholar 

  29. de Luis DA, Aller R, Izaola O, et al. Effect of two different hypocaloric diets in transaminases and insulin resistance in nonalcoholic fatty liver disease and obese patients. Nutr Hosp. 2010;25:730–5.

    PubMed  Google Scholar 

  30. Luukkonen PK, Dufour S, Lyu K, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 2020;117:7347–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mardinoglu A, Wu H, Bjornson E, et al. An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab. 2018;27:559–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Arsyad A, Idris I, Rasyid AA, et al. Long-term ketogenic diet induces metabolic acidosis, anemia, and oxidative stress in healthy wistar rats. J Nutr Metab. 2020;2020:3642035.

    PubMed  PubMed Central  Google Scholar 

  33. Trichopoulou A, Psaltopoulou T, Orfanos P, et al. Low-carbohydrate-high-protein diet and long-term survival in a general population cohort. Eur J Clin Nutr. 2007;61:575–81.

    CAS  PubMed  Google Scholar 

  34. Lagiou P, Sandin S, Lof M, et al. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women: prospective cohort study. BMJ Clin Res Ed. 2012;344:e4026.

    Google Scholar 

  35. Lang S, Martin A, Farowski F, et al. High protein intake is associated with histological disease activity in patients with NAFLD. Hepatol Commun. 2020;4:681–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41:1732–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Noureddin M, Zelber-Sagi S, Wilkens LR, et al. Diet associations with nonalcoholic fatty liver disease in an ethnically diverse population: the multiethnic cohort. Hepatology. 2020;71:1940–52.

    CAS  PubMed  Google Scholar 

  38. Yasutake K, Nakamuta M, Shima Y, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol. 2009;44:471–7.

    CAS  PubMed  Google Scholar 

  39. Kawaguchi T, Charlton M, Kawaguchi A, et al. Effects of mediterranean diet in patients with nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression analysis of randomized controlled trials. Semin Liver Dis. 2021;41:225–34.

    PubMed  Google Scholar 

  40. Hashemian M, Merat S, Poustchi H, et al. Red meat consumption and risk of nonalcoholic fatty liver disease in a population with low meat consumption: the golestan cohort study. Am J Gastroenterol. 2021;4:1413.

    Google Scholar 

  41. Zelber-Sagi S, Ivancovsky-Wajcman D, Fliss Isakov N, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68:1239–46.

    CAS  PubMed  Google Scholar 

  42. Tsugane S. Why has Japan become the world’s most long-lived country: insights from a food and nutrition perspective. Eur J Clin Nutr. 2021;75:921–8.

    PubMed  Google Scholar 

  43. Okada E, Nakamura K, Ukawa S, et al. The Japanese food score and risk of all-cause, CVD and cancer mortality: the Japan collaborative cohort study. Br J Nutr. 2018;120:464–71.

    CAS  PubMed  Google Scholar 

  44. Asano M, Kushida M, Yamamoto K, et al. Abdominal fat in individuals with overweight reduced by consumption of a 1975 Japanese diet: a randomized controlled trial. Obesity (Silver Spring, Md). 2019;27:899–907.

    CAS  Google Scholar 

  45. Migliaccio S, Brasacchio C, Pivari F, et al. What is the best diet for cardiovascular wellness? A comparison of different nutritional models. Int J Obesity Suppl. 2020;10:50–61.

    Google Scholar 

  46. Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatol. 2017;67:862–73.

    PubMed  Google Scholar 

  47. WHOE Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Google Scholar 

  48. Chen F, Esmaili S, Rogers GB, et al. Lean NAFLD: a distinct entity shaped by differential metabolic adaptation. Hepatology. 2020;71:1213–27.

    CAS  PubMed  Google Scholar 

  49. Shida T, Oshida N, Suzuki H, et al. Clinical and anthropometric characteristics of non-obese non-alcoholic fatty liver disease subjects in Japan. Hepatol Res. 2020;50:1032–46.

    CAS  PubMed  Google Scholar 

  50. Shen J, Wong GL, Chan HL, et al. PNPLA3 gene polymorphism accounts for fatty liver in community subjects without metabolic syndrome. Aliment Pharmacol Ther. 2014;39:532–9.

    CAS  PubMed  Google Scholar 

  51. Shen J, Wong GL, Chan HL, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46.

    CAS  PubMed  Google Scholar 

  52. Kwon Y, Jeong SJ. Relative Skeletal Muscle Mass Is an Important Factor in Non-Alcoholic Fatty Liver Disease in Non-Obese Children and Adolescents. J Clin Med. 2020;9:3355.

    CAS  PubMed Central  Google Scholar 

  53. Ministry of Health Labour and Welfare Japan. Health Japan 21. https://www.mhlwgo.jp/www1/topics/kenko21_11/b2.html. 2018.

  54. Ouyang X, Cirillo P, Sautin Y, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48:993–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1961–71.

    CAS  PubMed  Google Scholar 

  56. EASL-EASD-EASO. Clinical practice guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 2016;64:1388–402.

    Google Scholar 

  57. Tajima R, Kimura T, Enomoto A, et al. No association between fruits or vegetables and non-alcoholic fatty liver disease in middle-aged men and women. Nutrition (Burbank, Los Angeles County, Calif). 2019;61:119–24.

    Google Scholar 

  58. Zhao H, Yang A, Mao L, et al. Association between dietary fiber intake and non-alcoholic fatty liver disease in adults. Front Nutr. 2020;7:593735.

    PubMed  PubMed Central  Google Scholar 

  59. Bolton RP, Heaton KW, Burroughs LF. The role of dietary fiber in satiety, glucose, and insulin: studies with fruit and fruit juice. Am J Clin Nutr. 1981;34:211–7.

    CAS  PubMed  Google Scholar 

  60. Crowe KM, Murray E. Deconstructing a fruit serving: comparing the antioxidant density of select whole fruit and 100% fruit juices. J Acad Nutr Diet. 2013;113:1354–8.

    PubMed  Google Scholar 

  61. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vilar-Gomez E, Vuppalanchi R, Gawrieh S, et al. Vitamin E improves transplant-free survival and hepatic decompensation among patients with nonalcoholic steatohepatitis and advanced fibrosis. Hepatology. 2020;71:495–509.

    CAS  PubMed  Google Scholar 

  63. Lonn E, Bosch J, Yusuf S, et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    PubMed  Google Scholar 

  64. Klein EA, Thompson IM Jr, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the selenium and Vitamin E cancer prevention trial (SELECT). JAMA. 2011;306:1549–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Shivappa N, Steck SE, Hurley TG, et al. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.

    PubMed  Google Scholar 

  66. Grüngreiff K, Reinhold D. Liver cirrhosis and “liver” diabetes mellitus are linked by zinc deficiency. Med Hypotheses. 2005;64:316–7.

    PubMed  Google Scholar 

  67. Samman S. Zinc supplementation improves glucose disposal in patients with cirrhosis. Metabolism. 1999;48:1069–70.

    CAS  PubMed  Google Scholar 

  68. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Faghihzadeh F, Adibi P, Rafiei R, et al. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr Res (New York, NY). 2014;34:837–43.

    CAS  Google Scholar 

  70. Mirhafez SR, Azimi-Nezhad M, Dehabeh M, et al. The effect of curcumin phytosome on the treatment of patients with non-alcoholic fatty liver disease: a double-blind, randomized, placebo-controlled trial. Adv Exp Med Biol. 2021;1308:25–35.

    PubMed  Google Scholar 

  71. Shen H, Rodriguez AC, Shiani A, et al. Association between caffeine consumption and nonalcoholic fatty liver disease: a systemic review and meta-analysis. Ther Adv Gastroenterol. 2016;9:113–20.

    CAS  Google Scholar 

  72. Molloy JW, Calcagno CJ, Williams CD, et al. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology. 2012;55:429–36.

    CAS  PubMed  Google Scholar 

  73. Koopman KE, Caan MW, Nederveen AJ, et al. Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology. 2014;60:545–53.

    CAS  PubMed  Google Scholar 

  74. Trovato FM, Martines GF, Brischetto D, et al. Fatty liver disease and lifestyle in youngsters: diet, food intake frequency, exercise, sleep shortage and fashion. Liver Int. 2016;36:427–33.

    CAS  PubMed  Google Scholar 

  75. Tanihara S, Imatoh T, Miyazaki M, et al. Retrospective longitudinal study on the relationship between 8-year weight change and current eating speed. Appetite. 2011;57:179–83.

    PubMed  Google Scholar 

  76. Lee JS, Mishra G, Hayashi K, et al. Combined eating behaviors and overweight: Eating quickly, late evening meals, and skipping breakfast. Eat Behav. 2016;21:84–8.

    PubMed  Google Scholar 

  77. Ochiai H, Shirasawa T, Nanri H, et al. Eating quickly is associated with waist-to-height ratio among Japanese adolescents: a cross-sectional survey. Arch Public Health. 2016;74:18.

    PubMed  PubMed Central  Google Scholar 

  78. Tao L, Yang K, Huang F, et al. Association between self-reported eating speed and metabolic syndrome in a Beijing adult population: a cross-sectional study. BMC Public Health. 2018;18:855.

    PubMed  PubMed Central  Google Scholar 

  79. Nohara A, Maejima Y, Shimomura K, et al. Self-awareness of fast eating and its impact on diagnostic components of metabolic syndrome among middle-aged Japanese males and females. Endocr Regul. 2015;49:91–6.

    CAS  PubMed  Google Scholar 

  80. Zhu B, Haruyama Y, Muto T, et al. Association between eating speed and metabolic syndrome in a three-year population-based cohort study. J Epidemiol. 2015;25:332–6.

    PubMed  Google Scholar 

  81. Otsuka R, Tamakoshi K, Yatsuya H, et al. Eating fast leads to insulin resistance: findings in middle-aged Japanese men and women. Prev Med. 2008;46:154–9.

    PubMed  Google Scholar 

  82. Totsuka K, Maeno T, Saito K, et al. Self-reported fast eating is a potent predictor of development of impaired glucose tolerance in Japanese men and women: Tsukuba medical center study. Diabetes Res Clin Pract. 2011;94:e72–4.

    PubMed  Google Scholar 

  83. Radzevičienė L, Ostrauskas R. Fast eating and the risk of type 2 diabetes mellitus: a case-control study. Clin Nutr (Edinburgh, Scotland). 2013;32:232–5.

    Google Scholar 

  84. Mochizuki K, Miyauchi R, Hariya N, et al. Self-reported rate of eating is associated with higher circulating ALT activity in middle-aged apparently healthy Japanese men. Eur J Nutr. 2013;52:985–90.

    PubMed  Google Scholar 

  85. Mochizuki K, Hariya N, Miyauchi R, et al. Self-reported faster eating associated with higher ALT activity in middle-aged, apparently healthy Japanese women. Nutrition (Burbank, Los Angeles County, Calif). 2014;30:69–74.

    CAS  Google Scholar 

  86. Lee S, Ko BJ, Gong Y, et al. Self-reported eating speed in relation to non-alcoholic fatty liver disease in adults. Eur J Nutr. 2016;55:327–33.

    CAS  PubMed  Google Scholar 

  87. Cao X, Gu Y, Bian S, et al. Association between eating speed and newly diagnosed nonalcoholic fatty liver disease among the general population. Nutr Res (New York, NY). 2020;80:78–88.

    CAS  Google Scholar 

  88. Nishi T, Babazono A, Maeda T, et al. Effects of eating fast and eating before bedtime on the development of nonalcoholic fatty liver disease. Popul Health Manag. 2016;19:279–83.

    PubMed  Google Scholar 

  89. Takahashi F, Hashimoto Y, Kawano R, et al. Eating fast is associated with nonalcoholic fatty liver disease in men but not in women with type 2 diabetes: a cross-sectional study. Nutrients. 2020;12:2174.

    CAS  PubMed Central  Google Scholar 

  90. Sakata T, Yoshimatsu H, Masaki T, et al. Anti-obesity actions of mastication driven by histamine neurons in rats. Exp Biol Med (Maywood). 2003;228:1106–10.

    CAS  Google Scholar 

  91. Kokkinos A, le Roux CW, Alexiadou K, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab. 2010;95:333–7.

    CAS  PubMed  Google Scholar 

  92. Mansour-Ghanaei R, Mansour-Ghanaei F, Naghipour M, et al. The lifestyle characteristics in non-alcoholic fatty liver disease in the PERSIAN guilan cohort study. Open Access Macedonian J Med Sci. 2019;7:3313–8.

    Google Scholar 

  93. Shimizu H, Hanzawa F, Kim D, et al. Delayed first active-phase meal, a breakfast-skipping model, led to increased body weight and shifted the circadian oscillation of the hepatic clock and lipid metabolism-related genes in rats fed a high-fat diet. PLOS ONE. 2018;13:e0206669.

    PubMed  PubMed Central  Google Scholar 

  94. Regmi P, Chaudhary R, Page AJ, et al. Early or delayed time-restricted feeding prevents metabolic impact of obesity in mice. J Endocrinol. 2021;248:75–86.

    CAS  PubMed  Google Scholar 

  95. Xiao Q, Garaulet M, Scheer F. Meal timing and obesity: interactions with macronutrient intake and chronotype. Int J Obes. 2005;2019(43):1701–11.

    Google Scholar 

  96. Wicherski J, Schlesinger S, Fischer F. Association between breakfast skipping and body weight-a systematic review and meta-analysis of observational longitudinal studies. Nutrients. 2021;13:272.

    PubMed  PubMed Central  Google Scholar 

  97. Fukui H, Saito H, Ueno Y, et al. Evidence-based clinical practice guidelines for liver cirrhosis 2015. J Gastroenterol. 2016;51:629–50.

    CAS  PubMed  Google Scholar 

  98. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67:145–58.

    CAS  PubMed  Google Scholar 

  100. Kakazu E, Kondo Y, Ninomiya M, et al. The influence of pioglitazone on the plasma amino acid profile in patients with nonalcoholic steatohepatitis (NASH). Hepatol Int. 2013;7:577–85.

    PubMed  Google Scholar 

  101. Iwasa J, Shimizu M, Shiraki M, et al. Dietary supplementation with branched-chain amino acids suppresses diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BL/KsJ-db/db mice. Cancer Sci. 2010;101:460–7.

    CAS  PubMed  Google Scholar 

  102. Honda T, Ishigami M, Luo F, et al. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism. 2017;69:177–87.

    CAS  PubMed  Google Scholar 

  103. Takegoshi K, Honda M, Okada H, et al. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model. Oncotarget. 2017;8:18191–205.

    PubMed  PubMed Central  Google Scholar 

  104. Urata Y, Okita K, Korenaga K, et al. The effect of supplementation with branched-chain amino acids in patients with liver cirrhosis. Hepatol Res. 2007;37:510–6.

    CAS  PubMed  Google Scholar 

  105. Miyake T, Abe M, Furukawa S, et al. Long-term branched-chain amino acid supplementation improves glucose tolerance in patients with nonalcoholic steatohepatitis-related cirrhosis. Intern Med. 2012;51:2151–5.

    CAS  PubMed  Google Scholar 

  106. Kawanaka M, Nishino K, Oka T, et al. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat Med. 2015;7:29–35.

    PubMed  PubMed Central  Google Scholar 

  107. Sano A, Kakazu E, Morosawa T, et al. The profiling of plasma free amino acids and the relationship between serum albumin and plasma-branched chain amino acids in chronic liver disease: a single-center retrospective study. J Gastroenterol. 2018;53:978–88.

    CAS  PubMed  Google Scholar 

  108. Kim D, Vazquez-Montesino LM, Li AA, et al. Inadequate physical activity and sedentary behavior are independent predictors of nonalcoholic fatty liver disease. Hepatology. 2020;72:1556–68.

    CAS  PubMed  Google Scholar 

  109. Zhang X, Goh GB, Chan WK, et al. Unhealthy lifestyle habits and physical inactivity among Asian patients with non-alcoholic fatty liver disease. Liver Int. 2020;40:2719–31.

    PubMed  Google Scholar 

  110. Miyake T, Kumagi T, Hirooka M, et al. Significance of exercise in nonalcoholic fatty liver disease in men: a community-based large cross-sectional study. J Gastroenterol. 2015;50:230–7.

    PubMed  Google Scholar 

  111. Romero-Gomez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 2017;67:829–46.

    PubMed  Google Scholar 

  112. Takahashi H, Kotani K, Tanaka K, et al. Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Front Endocrinol (Lausanne). 2018;9:588.

    Google Scholar 

  113. Asada F, Nomura T, Hosui A, et al. Influence of increased physical activity without body weight loss on hepatic inflammation in patients with nonalcoholic fatty liver disease. Environ Health Prev Med. 2020;25:18.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pang Y, Lv J, Kartsonaki C, et al. Association of physical activity with risk of hepatobiliary diseases in China: a prospective cohort study of 0.5 million people. Br J Sports Med. 2020;55:1024.

    PubMed  Google Scholar 

  115. Oh S, Tsujimoto T, Kim B, et al. Weight-loss-independent benefits of exercise on liver steatosis and stiffness in Japanese men with NAFLD. JHEP Rep. 2021;3:100253.

    PubMed  PubMed Central  Google Scholar 

  116. Oh S, So R, Shida T, et al. High-intensity aerobic exercise improves both hepatic fat content and stiffness in sedentary obese men with nonalcoholic fatty liver disease. Sci Rep. 2017;7:43029.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. O’Gorman P, Naimimohasses S, Monaghan A, et al. Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention. Aliment Pharmacol Ther. 2020;52:1387–98.

    PubMed  Google Scholar 

  118. Baumeister SE, Schlesinger S, Aleksandrova K, et al. Association between physical activity and risk of hepatobiliary cancers: a multinational cohort study. J Hepatol. 2019;70:885–92.

    PubMed  Google Scholar 

  119. Kim D, Murag S, Cholankeril G, et al. Physical activity, measured objectively, is associated with lower mortality in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2020;19:1240.

    PubMed  Google Scholar 

  120. Oh S, Shida T, Yamagishi K, et al. Moderate to vigorous physical activity volume is an important factor for managing nonalcoholic fatty liver disease: a retrospective study. Hepatology. 2015;61:1205–15.

    CAS  PubMed  Google Scholar 

  121. Takahashi A, Abe K, Usami K, et al. Simple resistance exercise helps patients with non-alcoholic fatty liver disease. Int J Sports Med. 2015;36:848–52.

    CAS  PubMed  Google Scholar 

  122. Takahashi A, Imaizumi H, Hayashi M, et al. Simple resistance exercise for 24 weeks decreases alanine aminotransferase levels in patients with non-alcoholic fatty liver disease. Sports Med Int Open. 2017;1:E2–7.

    PubMed  PubMed Central  Google Scholar 

  123. Takahashi A, Abe K, Fujita M, et al. Simple resistance exercise decreases cytokeratin 18 and fibroblast growth factor 21 levels in patients with nonalcoholic fatty liver disease: a retrospective clinical study. Medicine (Baltimore). 2020;99:e20399.

    CAS  Google Scholar 

  124. Charatcharoenwitthaya P, Kuljiratitikal K, Aksornchanya O, et al. Moderate-intensity aerobic vs resistance exercise and dietary modification in patients with nonalcoholic fatty liver disease: a randomized clinical trial. Clin Transl Gastroenterol. 2021;12:e00316.

    PubMed  PubMed Central  Google Scholar 

  125. Oh S, Maruyama T, Eguchi K, et al. Therapeutic effect of hybrid training of voluntary and electrical muscle contractions in middle-aged obese women with nonalcoholic fatty liver disease: a pilot trial. Ther Clin Risk Manag. 2015;11:371–80.

    PubMed  PubMed Central  Google Scholar 

  126. Iwanaga S, Hashida R, Takano Y, et al. Hybrid training system improves insulin resistance in patients with nonalcoholic fatty liver disease: a randomized controlled pilot study. Tohoku J Exp Med. 2020;252:23–32.

    CAS  PubMed  Google Scholar 

  127. Riebe D, Franklin BA, Thompson PD, et al. Updating ACSM’s recommendations for exercise preparticipation health screening. Med Sci Sports Exerc. 2015;47:2473–9.

    CAS  PubMed  Google Scholar 

  128. Locklear CT, Golabi P, Gerber L, et al. Exercise as an intervention for patients with end-stage liver disease: systematic review. Medicine (Baltimore). 2018;97:e12774.

    Google Scholar 

  129. Uchida F, Oh S, Shida T, et al. Effects of exercise on the oral microbiota and saliva of patients with non-alcoholic fatty liver disease. Int J Environ Res Public Health. 2021;18:3470.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hughes A, Dahmus J, Rivas G, et al. Exercise training reverses gut dysbiosis in patients with biopsy-proven nonalcoholic steatohepatitis: a proof of concept study. Clin Gastroenterol Hepatol. 2020;19:1723.

    PubMed  Google Scholar 

  131. Gunji T, Matsuhashi N, Sato H, et al. Light and moderate alcohol consumption significantly reduces the prevalence of fatty liver in the Japanese male population. Am J Gastroenterol. 2009;104:2189–95.

    PubMed  Google Scholar 

  132. Moriya A, Iwasaki Y, Ohguchi S, et al. Roles of alcohol consumption in fatty liver: a longitudinal study. J Hepatol. 2015;62:921–7.

    CAS  PubMed  Google Scholar 

  133. Lau K, Baumeister SE, Lieb W, et al. The combined effects of alcohol consumption and body mass index on hepatic steatosis in a general population sample of European men and women. Aliment Pharmacol Ther. 2015;41:467–76.

    CAS  PubMed  Google Scholar 

  134. Alatalo PI, Koivisto HM, Hietala JP, et al. Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index. Am J Clin Nutr. 2008;88:1097–103.

    CAS  PubMed  Google Scholar 

  135. Chang Y, Cho YK, Kim Y, et al. Nonheavy drinking and worsening of noninvasive fibrosis markers in nonalcoholic fatty liver disease: a cohort study. Hepatology. 2019;69:64–75.

    CAS  PubMed  Google Scholar 

  136. Yamamura S, Eslam M, Kawaguchi T, et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40:3018–30.

    CAS  PubMed  Google Scholar 

  137. Åberg F, Puukka P, Salomaa V, et al. Risks of light and moderate alcohol use in fatty liver disease: follow-up of population cohorts. Hepatology. 2020;71:835–48.

    PubMed  Google Scholar 

  138. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990s-s991.

    CAS  PubMed  Google Scholar 

  139. Wang YM, Zhu KF, Zhou WJ, et al. Sarcopenia is associated with the presence of nonalcoholic fatty liver disease in Zhejiang Province, China: a cross-sectional observational study. BMC Geriatr. 2021;21:55.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J Hepatol. 2017;66:123–31.

    PubMed  Google Scholar 

  141. Petta S, Ciminnisi S, Di Marco V, et al. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2017;45:510–8.

    CAS  PubMed  Google Scholar 

  142. Lee YH, Jung KS, Kim SU, et al. Sarcopaenia is associated with NAFLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008–2011). J Hepatol. 2015;63:486–93.

    PubMed  Google Scholar 

  143. Cai C, Song X, Chen Y, et al. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Hep Intl. 2020;14:115–26.

    Google Scholar 

  144. Lee HJ, Lee DC, Kim CO. Association between 10-year fracture probability and nonalcoholic fatty liver disease with or without sarcopenia in korean men: a nationwide population-based cross-sectional study. Front Endocrinol. 2021;12:599339.

    Google Scholar 

  145. Iritani S, Imai K, Takai K, et al. Skeletal muscle depletion is an independent prognostic factor for hepatocellular carcinoma. J Gastroenterol. 2015;50:323–32.

    CAS  PubMed  Google Scholar 

  146. Kamachi S, Mizuta T, Otsuka T, et al. Sarcopenia is a risk factor for the recurrence of hepatocellular carcinoma after curative treatment. Hepatol Res. 2016;46:201–8.

    CAS  PubMed  Google Scholar 

  147. Bhanji RA, Narayanan P, Allen AM, et al. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology. 2017;66:2055–65.

    CAS  PubMed  Google Scholar 

  148. Marcus RL, Addison O, Kidde JP, et al. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14:362–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kitajima Y, Eguchi Y, Ishibashi E, et al. Age-related fat deposition in multifidus muscle could be a marker for nonalcoholic fatty liver disease. J Gastroenterol. 2010;45:218–24.

    PubMed  Google Scholar 

  150. Kitajima Y, Hyogo H, Sumida Y, et al. Severity of non-alcoholic steatohepatitis is associated with substitution of adipose tissue in skeletal muscle. J Gastroenterol Hepatol. 2013;28:1507–14.

    PubMed  Google Scholar 

  151. Nishida Y, Ide Y, Okada M, et al. Effects of home-based exercise and branched-chain amino acid supplementation on aerobic capacity and glycemic control in patients with cirrhosis. Hepatol Res. 2017;47:E193-e200.

    CAS  PubMed  Google Scholar 

  152. Hiraoka A, Michitaka K, Kiguchi D, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29:1416–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study was supported by JSPS KAKENHI grants (Grant Number 20K08383) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conceptualization: YK, AN. Writing—original draft preparation: YK, HT, MS, TK, YS, YS, SF. Writing—review and editing: YK, TK, YS, HF, KT. Supervision: AN, TO.

Corresponding author

Correspondence to Yoshihiro Kamada.

Ethics declarations

Conflict of interest

AN received speaker fees from Astellas, EA Pharma, Takeda Pharmaceutical Company, Mochida Pharmaceutical Co., Ltd, Biofermin Pharma, Taisho Pharmaceutical Co., Ltd, Mylan EPD, Kowa Company, and Tsumura. MS received speaker fees from Otsuka Pharmaceutical Co., Lyd. AN reports grants from Biofermin, Mylan EPD, Gilead Sciences, Astellas, and EA Pharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamada, Y., Takahashi, H., Shimizu, M. et al. Clinical practice advice on lifestyle modification in the management of nonalcoholic fatty liver disease in Japan: an expert review. J Gastroenterol 56, 1045–1061 (2021). https://doi.org/10.1007/s00535-021-01833-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01833-9

Keywords

Navigation