Skip to main content

Advertisement

Log in

APC mutations are common in adenomas but infrequent in adenocarcinomas of the non-ampullary duodenum

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Recent studies highlighted the clinicopathological heterogeneity of non-ampullary duodenal adenomas and adenocarcinomas, but the detailed process of the malignant transformation remains unclear.

Methods

We analyzed 144 adenomas and 54 adenocarcinomas of the non-ampullary duodenum for immunohistochemical phenotypes, genetic alterations, and mismatch repair (MMR) status to probe their histogenetic relationship.

Results

The median ages of patients with adenoma and adenocarcinoma were the same (66 years). Adenomas were histologically classified as intestinal-type adenoma (n = 124), pyloric gland adenoma (PGA, n = 10), gastric-type adenoma, not otherwise specified (n = 9), and foveolar-type adenoma (n = 1). Protein-truncating APC mutations were highly frequent in adenomas (85%), with the highest prevalence in intestinal-type adenomas (89%), but rare in adenocarcinomas (9%; P = 2.1 × 10–23). Close associations between phenotypic marker expression and genetic alterations were observed in adenomas, but not in adenocarcinomas, excluding the common association between GNAS mutations and MUC5AC expression. MMR deficiency was more frequent in adenocarcinomas (20%) than in adenomas (1%; P = 2.6 × 10–6). One MMR-deficient adenoma and three MMR-deficient adenocarcinomas occurred in patients with Lynch syndrome. Additionally, three other patients with an MMR-deficient adenocarcinoma fulfilled the revised Bethesda criteria.

Conclusion

The discrepant APC mutation frequency between adenomas and adenocarcinomas suggests that APC-mutated adenomas, which constitute the large majority of non-ampullary duodenal adenomas, are less prone to malignant transformation. Non-ampullary duodenal adenocarcinomas frequently exhibit MMR deficiency and should be subject to MMR testing to determine appropriate clinical management, including the identification of patients with Lynch syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lepage C, Bouvier A-M, Manfredi S, et al. Incidence and management of primary malignant small bowel cancers: a well-defined French population study. Am J Gastroenterol. 2006;101:2826–32.

    Article  PubMed  Google Scholar 

  2. Bilimoria KY, Bentrem DJ, Wayne JD, et al. Small bowel cancer in the United States: changes in epidemiology, treatment, and survival over the last 20 years. Ann Surg. 2009;249:63–71.

    Article  PubMed  Google Scholar 

  3. Lu Y, Fröbom R, Lagergren J. Incidence patterns of small bowel cancer in a population-based study in Sweden: increase in duodenal adenocarcinoma. Cancer Epidemiol. 2012;36:e158–63.

    Article  PubMed  Google Scholar 

  4. Ushiku T, Arnason T, Fukayama M, et al. Extra-ampullary duodenal adenocarcinoma. Am J Surg Pathol. 2014;38:1484–93.

    Article  PubMed  Google Scholar 

  5. Xue Y, Vanoli A, Balci S, et al. Non-ampullary-duodenal carcinomas: clinicopathologic analysis of 47 cases and comparison with ampullary and pancreatic adenocarcinomas. Mod Pathol. 2017;30:255–66.

    Article  CAS  PubMed  Google Scholar 

  6. Laforest A, Aparicio T, Zaanan A, et al. ERBB2 gene as a potential therapeutic target in small bowel adenocarcinoma. Eur J Cancer. 2014;50:1740–6.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan W, Zhang Z, Dai B, et al. Whole-exome sequencing of duodenal adenocarcinoma identifies recurrent Wnt/β-catenin signaling pathway mutations: exome sequencing of duodenal cancer. Cancer. 2016;122:1689–96.

    Article  CAS  PubMed  Google Scholar 

  8. Yachida S, Wood LD, Suzuki M, et al. Genomic sequencing identifies ELF3 as adriver of ampullary carcinoma. Cancer Cell. 2016;29:229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  CAS  Google Scholar 

  10. Spigelman AD, Talbot IC, Penna C, et al. Evidence for adenoma-carcinoma sequence in the duodenum of patients with familial adenomatous polyposis. The Leeds Castle Polyposis Group (Upper Gastrointestinal Committee). J Clin Pathol. 1994;47:709–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spigelman AD, Talbot IC, Williams CB, et al. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. The Lancet. 1989;334:783–5.

    Article  Google Scholar 

  12. Powell SM, Petersen GM, Krush AJ, et al. Molecular diagnosis of familial adenomatous polyposis. N Engl J Med. 1993;329:1982–7.

    Article  CAS  PubMed  Google Scholar 

  13. Offerhaus GJA, Giardiello FM, Krush AJ, et al. The risk of upper gastrointestinal cancer in familial adenomatous polyposis. Gastroenterology. 1992;102:1980–2.

    Article  CAS  PubMed  Google Scholar 

  14. Groves C, Saunders BP, Spigelman AD, et al. Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study. Gut. 2002;50:636–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bülow S, Björk J, Christensen IJ, et al. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53:381–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Latchford AR, Neale KF, Spigelman AD, et al. Features of duodenal cancer in patients with familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2009;7:659–63.

    Article  PubMed  Google Scholar 

  17. Perzin KH, Bridge MF. Adenomas of the small intestine: a clinicopathologic review of 51 cases and a study of their relationship to carcinoma. Cancer. 1981;48:799–819.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner PL, Chen Y-T, Yantiss RK. Immunohistochemical and molecular features of sporadic and FAP-associated duodenal aenomas of the ampullary and nonampullary mucosa. Am J Surg Pathol. 2008;32:1388–95.

    Article  PubMed  Google Scholar 

  19. Kushima R, Rüthlein HJ, Stolte M, et al. ’Pyloric gland-type adenoma’ arising in heterotopic gastric mucosa of the duodenum, with dysplastic progression of the gastric type. Virchows Arch. 1999;435:452–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kushima R, Stolte M, Dirks K, et al. Gastric-type adenocarcinoma of the duodenal second portion histogenetically associated with hyperplasia and gastric-foveolar metaplasia of Brunner’s glands. Virchows Arch. 2002;440:655–9.

    Article  PubMed  Google Scholar 

  21. Sakurai T, Sakashita H, Honjo G, et al. Gastric foveolar metaplasia with dysplastic changes in Brunner gland hyperplasia: possible precursor lesions for Brunner gland adenocarcinoma. Am J Surg Pathol. 2005;29:1442–8.

    Article  PubMed  Google Scholar 

  22. Matsubara A, Ogawa R, Suzuki H, et al. Activating GNAS and KRAS mutations in gastric foveolar metaplasia, gastric heterotopia, and adenocarcinoma of the duodenum. Br J Cancer. 2015;112:1398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sekine S, Shia J. Non-ampullary adenoma. In: WHO Classification of Tumours Editorial Board, editor. Digestive system tumours. 5th ed. Lyon: IARC; 2019. p. 118–20.

    Google Scholar 

  24. Inoue T, Uedo N, Yamashina T, et al. Delayed perforation: a hazardous complication of endoscopic resection for non-ampullary duodenal neoplasm: delayed perforation after duodenal ER. Dig Endosc. 2014;26:220–7.

    Article  PubMed  Google Scholar 

  25. Nonaka S, Oda I, Tada K, et al. Clinical outcome of endoscopic resection for nonampullary duodenal tumors. Endoscopy. 2014;47:129–35.

    PubMed  Google Scholar 

  26. Adsay NV, Nagtegaal ID, Reid MD. Non-ampullary adenocarcinoma. In: WHO Classification of Tumours Editorial Board, editor. Digestive system tumours. 5th ed. Lyon: IARC; 2019. p. 124–6.

    Google Scholar 

  27. Hashimoto T, Ogawa R, Matsubara A, et al. Familial adenomatous polyposis-associated and sporadic pyloric gland adenomas of the upper gastrointestinal tract share common genetic features. Histopathology. 2015;67:689–98.

    Article  PubMed  Google Scholar 

  28. Mahajan D, Downs-Kelly E, Liu X, et al. Reproducibility of the villous component and high-grade dysplasia in colorectal adenomas <1 cm: implications for endoscopic surveillance. Am J SurgPathol. 2013;37:427–33.

    Article  Google Scholar 

  29. Sekine S, Mori T, Ogawa R, et al. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis. Mod Pathol. 2017;30:1144–51.

    Article  CAS  PubMed  Google Scholar 

  30. Chan AO-O, Broaddus RR, Houlihan PS, et al. CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol. 2002;160:1823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  CAS  PubMed  Google Scholar 

  32. Christie M, Jorissen RN, Mouradov D, et al. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene. 2013;32:4675–82.

    Article  CAS  PubMed  Google Scholar 

  33. Matsubara A, Sekine S, Kushima R, et al. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol. 2013;229:579–87.

    Article  CAS  PubMed  Google Scholar 

  34. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. JNCI J Natl Cancer Inst. 2004;96:261–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida M, Shimoda T, Abe M, et al. Clinicopathological characteristics of non-ampullary duodenal tumors and their phenotypic classification. Pathol Int. 2019;69:398–406.

    Article  CAS  PubMed  Google Scholar 

  36. Mitsuishi T, Hamatani S, Hirooka S, et al. Clinicopathological characteristics of duodenal epithelial neoplasms: Focus on tumors with a gastric mucin phenotype (pyloric gland-type tumors). PLoS ONE. 2017;12:e0174985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hijikata K, Nemoto T, Igarashi Y, et al. Extra-ampullary duodenal adenoma: a clinicopathological study. Histopathology. 2017;71:200–7.

    Article  PubMed  Google Scholar 

  38. Campos FG, Martinez CAR, Bustamante Lopez LA, et al. Advanced duodenal neoplasia and carcinoma in familial adenomatous polyposis: outcomes of surgical management. J Gastrointest Oncol. 2017;8:877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen Z-M, Scudiere JR, Abraham SC, et al. Pyloric gland adenoma: an entity distinct from gastric foveolar type adenoma. Am J Surg Pathol. 2009;33:186–93.

    Article  PubMed  Google Scholar 

  40. Miller GC, Kumarasinghe MP, Borowsky J, et al. Clinicopathological features of pyloric gland adenomas of the duodenum: a multicentre study of 57 cases. Histopathology. 2020;76:404–10.

    Article  PubMed  Google Scholar 

  41. Vieth M, Kushima R, Borchard F, et al. Pyloric gland adenoma: a clinico-pathological analysis of 90 cases. Virchows Arch. 2003;442:317–21.

    Article  CAS  PubMed  Google Scholar 

  42. Abraham SC, Nobukawa B, Giardiello FM, et al. Fundic gland polyps in familial adenomatous polyposis. Am J Pathol. 2000;157:747–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rokutan H, Abe H, Nakamura H, et al. Initial and crucial genetic events in intestinal-type gastric intramucosal neoplasia: early mutations of gastric intramucosal neoplasia. J Pathol. 2019;247:494–504.

    Article  CAS  PubMed  Google Scholar 

  44. Ota R, Sawada T, Tsuyama S, et al. Integrated genetic and epigenetic analysis of cancer-related genes in non-ampullary duodenal adenomas and intramucosal adenocarcinomas. J Pathol. 2020;252:330–42.

    Article  CAS  PubMed  Google Scholar 

  45. Toyooka M, Konishi M, Kikuchi-Yanoshita R, et al. Somatic mutations of the adenomatous polyposis coli gene in gastroduodenal tumors from patients with familial adenomatous polyposis. Cancer Res. 1995;55:3165–70.

    CAS  PubMed  Google Scholar 

  46. Groves C, Lamlum H, Crabtree M, et al. Mutation cluster region, association between germline and somatic mutations and genotype-phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol. 2002;160:2055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loman NJ, Misra RV, Dallman TJ, et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012;30:434–9.

    Article  CAS  PubMed  Google Scholar 

  48. Reid MD, Balci S, Ohike N, et al. Ampullary carcinoma is often of mixed or hybrid histologic type: an analysis of reproducibility and clinical relevance of classification as pancreatobiliary versus intestinal in 232 cases. Mod Pathol. 2016;29:1575–85.

    Article  PubMed  Google Scholar 

  49. Watari J, Mitani S, Ito C, et al. Molecular alterations and PD-L1 expression in non-ampullary duodenal adenocarcinoma: Associations among clinicopathological, immunophenotypic and molecular features. Sci Rep. 2019;9:10526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Aparicio T, Svrcek M, Zaanan A, et al. Small bowel adenocarcinoma phenotyping, a clinicobiological prognostic study. Br J Cancer. 2013;109:3057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Overman MJ, Pozadzides J, Kopetz S, et al. Immunophenotype and molecular characterisation of adenocarcinoma of the small intestine. Br J Cancer. 2010;102:144–50.

    Article  CAS  PubMed  Google Scholar 

  52. Planck M, Ericson K, Piotrowska Z, et al. Microsatellite instability and expression of MLH1 and MSH2 in carcinomas of the small intestine. Cancer. 2003;97:1551–7.

    Article  CAS  PubMed  Google Scholar 

  53. Jenkins MA, Hayashi S, O’Shea A-M, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology. 2007;133:48–56.

    Article  CAS  PubMed  Google Scholar 

  54. Koornstra JJ, Kleibeuker JH, Vasen HF. Small-bowel cancer in Lynch syndrome: is it time for surveillance? Lancet Oncol. 2008;9:901–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Reiko Ogawa, Ms. Sachiko Miura, Ms. Toshiko Sakaguchi, and Ms. Chizu Kina for their skillful technical assistance. This work was supported by JSPS KAKENHI Grant Number 20K07401.

Author information

Authors and Affiliations

Authors

Contributions

KI, TH, and SS designed the study. TH and SS performed mutation analyses. KI, TH, TN, YY, and SS performed histological and immunohistochemical analyses. MK, TK, SN, IO, ME, MK, NG, TYoshida, and TYoshikawa provided tissue samples and clinical information. KI and SS wrote the manuscript. All authors contributed to discussions and gave final approval of the submitted manuscript.

Corresponding author

Correspondence to Shigeki Sekine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 381 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizu, K., Hashimoto, T., Naka, T. et al. APC mutations are common in adenomas but infrequent in adenocarcinomas of the non-ampullary duodenum. J Gastroenterol 56, 988–998 (2021). https://doi.org/10.1007/s00535-021-01823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01823-x

Keywords

Navigation