Skip to main content

Advertisement

Log in

Comprehensive analysis of genetic aberrations linked to tumorigenesis in regenerative nodules of liver cirrhosis

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) recurrently develops in cirrhotic liver containing a number of regenerative nodules (RNs). However, the biological tumorigenic potential of RNs is still unclear. To uncover the molecular bases of tumorigenesis in liver cirrhosis, we investigated the genetic aberrations in RNs of cirrhotic tissues using next-generation sequencing.

Methods

We isolated 205 RNs and 7 HCC tissues from the whole explanted livers of 10 randomly selected patients who had undergone living-donor liver transplantation. Whole-exome sequencing and additional targeted deep sequencing on 30 selected HCC-related genes were conducted to reveal the mutational landscape of RNs and HCCs.

Results

Whole-exome sequencing demonstrated that RNs frequently harbored relatively high-abundance genetic alterations, suggesting a clonal structure of each RN in cirrhotic liver. The mutation signature observed in RNs was similar to those determined in HCC, characterized by a predominance of C>T transitions, followed by T>C and C>A mutations. Targeted deep sequencing analyses of RNs identified nonsynonymous low-abundance mutations in various tumor-related genes, including TP53 and ARID1A. In contrast, TERT promoter mutations were not detected in any of the RNs examined. Consistently, TERT expression levels in RNs were comparable to those in normal livers, whereas every HCC tissue demonstrated an elevated level of TERT expression.

Conclusion

Analyses of RNs constructing cirrhotic liver indicated that a variety of genetic aberrations accumulate in the cirrhotic liver before the development of clinically and histologically overt HCC. These aberrations in RNs could provide the basis of tumorigenesis in patients with liver cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  3. Yoshida H, Shiratori Y, Kudo M, et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology. 2011;54:532–40.

    Article  CAS  PubMed  Google Scholar 

  4. Takeda H, Takai A, Inuzuka T, et al. Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis. J Gastroenterol. 2017;52:26–38.

    Article  CAS  PubMed  Google Scholar 

  5. The International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology. 2009;49:658–64.

    Article  Google Scholar 

  6. Shin S, Wangensteen KJ, Teta-Bissett M, et al. Genetic lineage tracing analysis of the cell of origin of hepatotoxin-induced liver tumors in mice. Hepatology. 2016;64:1163–77.

    Article  CAS  PubMed  Google Scholar 

  7. Aihara T, Noguchi S, Sasaki Y, et al. Clonal analysis of regenerative nodules in hepatitis C virus-induced liver cirrhosis. Gastroenterology. 1994;107:1805–11.

    Article  CAS  PubMed  Google Scholar 

  8. Lin WR, Lim SN, McDonald SA, et al. The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology. 2010;51:1017–26.

    Article  CAS  PubMed  Google Scholar 

  9. Ochiai T, Urata Y, Yamano T, et al. Clonal expansion in evolution of chronic hepatitis to hepatocellular carcinoma as seen at an X-chromosome locus. Hepatology. 2000;31:615–21.

    Article  CAS  PubMed  Google Scholar 

  10. Yasui H, Hino O, Ohtake K, et al. Clonal growth of hepatitis B virus-integrated hepatocytes in cirrhotic liver nodules. Cancer Res. 1992;52:6810–4.

    CAS  PubMed  Google Scholar 

  11. Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46:1267–73.

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173:321–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Marusawa H, Matsumoto Y, et al. Accumulation of somatic mutations in TP53 in gastric epithelium with Helicobacter pylori infection. Gastroenterology. 2014;147:407–17.

    Article  CAS  PubMed  Google Scholar 

  16. Ross-Innes CS, Becq J, Warren A, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47:1038–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ikeda A, Shimizu T, Matsumoto Y, et al. Leptin receptor somatic mutations are frequent in HCV-infected cirrhotic liver and associated with hepatocellular carcinoma. Gastroenterology. 2014;146:222–32.

    Article  CAS  PubMed  Google Scholar 

  18. Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60:1983–92.

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto T, Takai A, Eso Y, et al. Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res. 2017;77:6131–43.

    Article  CAS  PubMed  Google Scholar 

  20. Ki Kim S, Ueda Y, Hatano E, et al. TERT promoter mutations and chromosome 8p loss are characteristic of nonalcoholic fatty liver disease-related hepatocellular carcinoma. Int J Cancer. 2016;139:2512–8.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida K, Toki T, Okuno Y, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mizuguchi A, Takai A, Shimizu T, et al. Genetic features of multicentric/multifocal intramucosal gastric carcinoma. Int J Cancer. 2018;143:1923–34.

    Article  CAS  PubMed  Google Scholar 

  25. Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olivier M, Weninger A, Ardin M, et al. Modelling mutational landscapes of human cancers in vitro. Sci Rep. 2014;4:4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mu X, Espanol-Suner R, Mederacke I, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891–903.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fujimoto A, Furuta M, Totoki Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48:500–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fujimoto A, Furuta M, Shiraishi Y, et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 2015;6:6120.

    Article  CAS  PubMed  Google Scholar 

  30. Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.

    Article  CAS  PubMed  Google Scholar 

  31. Shibata T, Aburatani H. Exploration of liver cancer genomes. Nat Rev Gastroenterol Hepatol. 2014;11:340–9.

    Article  CAS  PubMed  Google Scholar 

  32. Totoki Y, Tatsuno K, Yamamoto S, et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet. 2011;43:464–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, Holt RA, Jones SJ, Lee D, Ma Y, Marra MA. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–41.

    Article  CAS  Google Scholar 

  34. Eso Y, Marusawa H. Novel approaches for molecular targeted therapy against hepatocellular carcinoma. Hepatol Res. 2018;48:597–607.

    Article  PubMed  Google Scholar 

  35. Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171:1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs. Yoshihide Ueda, Ken Takahashi, Yuji Eso, Tadashi Inuzuka, Tomoyuki Goto, Aya Mizuguchi, Minami Lee, Takahiro Shimizu, Eriko Iguchi, Fumiyasu Nakamura, Soichi Arasawa, Ken Kumagai, Hiromichi Suzuki, and Keisuke Kataoka for interpretation of data and helpful advice. We also thank Drs. Etsuro Hatano, Kojiro Taura, Satoru Seo, and Hideaki Okajima for material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Marusawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.K., Takeda, H., Takai, A. et al. Comprehensive analysis of genetic aberrations linked to tumorigenesis in regenerative nodules of liver cirrhosis. J Gastroenterol 54, 628–640 (2019). https://doi.org/10.1007/s00535-019-01555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-019-01555-z

Keywords

Navigation