Skip to main content

Advertisement

Log in

Telomere length of gallbladder epithelium is shortened in patients with congenital biliary dilatation: measurement by quantitative fluorescence in situ hybridization

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

A Correction to this article was published on 05 December 2017

This article has been updated

Abstract

Background

Congenital biliary dilatation (CBD) is a congenital malformation involving both dilatation of the extrahepatic bile duct and pancreaticobiliary maljunction. Persistent reflux of pancreatic juice injures the biliary tract mucosa, resulting in chronic inflammation and higher rates of carcinogenesis in the biliary tract, including the gallbladder. Telomeres are repetitive DNA sequences located at the ends of chromosomes. Chromosomal instability due to telomere dysfunction plays an important role in the carcinogenesis of many organs. This study was performed to determine whether excessive shortening of telomeres occurs in the gallbladder mucosa of patients with CBD.

Methods

Resected gallbladders were obtained from 17 patients with CBD, ten patients with cholecystolithiasis without pancreatic juice reflux, and 17 patients with normal gallbladders (controls) (median age of each group of patients: 37, 50, and 53 years, respectively). The telomere lengths of the gallbladder epithelium were measured by quantitative fluorescence in situ hybridization using tissue sections, and the normalized telomere-to-centromere ratio (NTCR) was calculated.

Results

The NTCRs in the CBD, cholecystolithiasis, and control groups were 1.24 [interquartile range (IQR) 1.125–1.52], 1.96 (IQR 1.56–2.295), and 1.77 (IQR 1.48–2.53), respectively. The NTCR in the CBD group was significantly smaller than that in the cholecystolithiasis and control groups (p = 0.003 and 0.004, respectively), even in young patients.

Conclusions

Our findings indicate that telomere shortening in the gallbladder mucosa plays an important role in the process of carcinogenesis in patients with CBD. These results support the recommendation of established guidelines for prophylactic surgery in patients with CBD because CBD is a premalignant condition with excessive telomere shortening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 05 December 2017

    In the original publication of this article, Fig. 5 was published with incorrect color of the approximate lines of CBD and Control.

References

  1. Hamada Y, Ando H, Kamisawa T, et al. Diagnostic criteria for congenital biliary dilatation 2015. J Hepatobiliary Pancreat Sci. 2016;23:342–6.

    Article  PubMed  Google Scholar 

  2. Ishibashi H, Shimada M, Kamisawa T, et al. Japanese clinical practice guidelines for congenital biliary dilatation. J Hepatobiliary Pancreat Sci. 2017;24:1–16.

    Article  PubMed  Google Scholar 

  3. Kamisawa T, Ando H, Hamada Y, et al. Diagnostic criteria for pancreaticobiliary maljunction 2013. J Hepatobiliary Pancreat Sci. 2014;21:159–61.

    Article  PubMed  Google Scholar 

  4. Kamisawa T, Takuma K, Anjiki H, et al. Pancreaticobiliary maljunction. Clin Gastroenterol Hepatol. 2009;7:S84–8.

    Article  PubMed  Google Scholar 

  5. Kamisawa T, Egawa N, Nakajima H, et al. Origin of the long common channel based on pancreatographic findings in pancreaticobiliary maljunction. Dig Liver Dis. 2005;37:363–7.

    Article  CAS  PubMed  Google Scholar 

  6. Kamisawa T, Kuruma S, Tabata T, et al. Pancreaticobiliary maljunction and biliary cancer. J Gastroenterol. 2015;50:273–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fujimoto T, Ohtsuka T, Nakashima Y, et al. Elevated bile amylase level without pancreaticobiliary maljunction is a risk factor for gallbladder carcinoma. J Hepatobiliary Pancreat Sci. 2017;24:103–8.

    Article  PubMed  Google Scholar 

  8. Li Y, Wei J, Zhao Z, et al. Pancreaticobiliary maljunction is associated with common bile duct carcinoma: a meta-analysis. Sci World J. 2013;2013:618670.

    Google Scholar 

  9. Deng YL, Cheng NS, Lin YX, et al. Relationship between pancreaticobiliary maljunction and gallbladder carcinoma: meta-analysis. Hepatobiliary Pancreat Dis Int. 2011;10:570–80.

    Article  PubMed  Google Scholar 

  10. Morine Y, Shimada M, Takamatsu H, et al. Clinical features of pancreaticobiliary maljunction: update analysis of 2nd Japan-nationwide survey. J Hepatobiliary Pancreat Sci. 2013;20:472–80.

    Article  PubMed  Google Scholar 

  11. Matsuda T, Marugame T, Kamo K, et al. Cancer incidence and incidence rates in Japan in 2003: based on data from 13 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) Project. Jpn J Clin Oncol. 2009;39:850–8.

    Article  PubMed  Google Scholar 

  12. Kamisawa T, Ando H, Suyama M, et al. Japanese clinical practice guidelines for pancreaticobiliary maljunction. J Gastroenterol. 2012;47:731–59.

    Article  PubMed  Google Scholar 

  13. Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85:6622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sandell LL, Zakian VA. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 1993;75:729–39.

    Article  CAS  PubMed  Google Scholar 

  15. Blackburn EH. Telomeres: no end in sight. Cell. 1994;77:621–3.

    Article  CAS  PubMed  Google Scholar 

  16. Takubo K, Izumiyama-Shimomura N, Honma N, et al. Telomere lengths are characteristic in each human individual. Exp Gerontol. 2002;37:523–31.

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa N, Nakamura K, Izumiyama-Shimomura N, et al. Changes of telomere status with aging: an update. Geriatr Gerontol Int. 2016;16(1):30–42.

    Article  PubMed  Google Scholar 

  18. Takubo K, Nakamura K, Izumiyama N, et al. Telomere shortening with aging in human liver. J Gerontol A Biol Sci Med Sci. 2000;55:B533–6.

    Article  CAS  PubMed  Google Scholar 

  19. O’Sullivan JN, Bronner MP, Brentnall TA, et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet. 2002;32:280–4.

    Article  PubMed  Google Scholar 

  20. Saretzki G, Von Zglinicki T. Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci. 2002;959:24–9.

    Article  CAS  PubMed  Google Scholar 

  21. Epel ES, Blackburn EH, Lin J, et al. Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA. 2004;101:17312–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aida J, Yokoyama A, Izumiyama N, et al. Alcoholics show reduced telomere length in the oesophagus. J Pathol. 2011;223:410–6.

    Article  PubMed  Google Scholar 

  23. DePinho RA. The age of cancer. Nature. 2000;408:248–54.

    Article  CAS  PubMed  Google Scholar 

  24. Takubo K, Aida J, Izumiyama-Shimomura N, et al. Changes of telomere length with aging. Geriatr Gerontol Int. 2010;10(1):S197–206.

    Article  PubMed  Google Scholar 

  25. Takubo K, Nakamura K, Izumiyama N, et al. Telomere shortening with aging in human esophageal mucosa. Age (Omaha). 1999;22:95–9.

    Article  CAS  Google Scholar 

  26. Lansdorp PM, Verwoerd NP, van de Rijke FM, et al. Heterogeneity in telomere length of human chromosomes. Hum Mol Genet. 1996;5:685–91.

    Article  CAS  PubMed  Google Scholar 

  27. Meeker AK, Gage WR, Hicks JL, et al. Telomere length assessment in human archival tissues: combined telomere fluorescence in situ hybridization and immunostaining. Am J Pathol. 2002;160:1259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferlicot S, Youssef N, Feneux D, et al. Measurement of telomere length on tissue sections using quantitative fluorescence in situ hybridization (Q-FISH). J Pathol. 2003;200:661–6.

    Article  CAS  PubMed  Google Scholar 

  29. Kammori M, Onoda N, Nakamura K, et al. Specific subtelomere loss on chromosome der (11) t (3; 11) (q23; q23) × 2 in anaplastic thyroid cancer cell line OCUT-1. Int J Mol Med. 2006;18:9–16.

    PubMed  Google Scholar 

  30. Aida J, Izumiyama-Shimomura N, Nakamura K, et al. Telomere length variations in 6 mucosal cell types of gastric tissue observed using a novel quantitative fluorescence in situ hybridization method. Hum Pathol. 2007;38:1192–200.

    Article  CAS  PubMed  Google Scholar 

  31. Kammori M, Poon SS, Nakamura K, et al. Squamous cell carcinomas of the esophagus arise from a telomere-shortened epithelial field. Int J Mol Med. 2007;20:793–9.

    CAS  PubMed  Google Scholar 

  32. Aida J, Izumiyama-Shimomura N, Nakamura K, et al. Basal cells have longest telomeres measured by tissue Q-FISH method in lingual epithelium. Exp Gerontol. 2008;43:833–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kurabayashi R, Takubo K, Aida J, et al. Luminal and cancer cells in the breast show more rapid telomere shortening than myoepithelial cells and fibroblasts. Hum Pathol. 2008;39:1647–55.

    Article  CAS  PubMed  Google Scholar 

  34. Shiraishi H, Mikami T, Aida J, et al. Telomere shortening in Barrett’s mucosa and esophageal adenocarcinoma and its association with loss of heterozygosity. Scand J Gastroenterol. 2009;44:538–44.

    Article  CAS  PubMed  Google Scholar 

  35. Aida J, Izumo T, Shimomura N, et al. Telomere lengths in the oral epithelia with and without carcinoma. Eur J Cancer. 2010;46:430–8.

    Article  CAS  PubMed  Google Scholar 

  36. Takubo K, Aida J, Izumiyama N, et al. Chromosomal instability and telomere lengths of each chromosomal arm measured by Q-FISH in human fibroblast strains prior to replicative senescence. Mech Ageing Dev. 2010;131:614–24.

    Article  CAS  PubMed  Google Scholar 

  37. Takubo K, Fujita M, Izumiyama N, et al. Q-FISH analysis of telomere and chromosome instability in the oesophagus with and without squamous cell carcinoma in situ. J Pathol. 2010;221:201–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sanada Y, Aida J, Kawano Y, et al. Hepatocellular telomere length in biliary atresia measured by Q-FISH. World J Surg. 2012;36:908–16.

    Article  PubMed  Google Scholar 

  39. Kawano Y, Ishikawa N, Aida J, et al. Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One. 2014;9:e93749.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Todani T, Watanabe Y, Narusue M, et al. Congenital bile duct cysts: classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg. 1977;134:263–9.

    Article  CAS  PubMed  Google Scholar 

  41. Ohashi M, Aizawa S, Ooka H, et al. A new human diploid cell strain, TIG-1, for the research on cellular aging. Exp Gerontol. 1980;15:121–33.

    Article  CAS  PubMed  Google Scholar 

  42. Funabiki T, Matsubara T, Miyakawa S, et al. Pancreaticobiliary maljunction and carcinogenesis to biliary and pancreatic malignancy. Langenbecks Arch Surg. 2009;394:159–69.

    Article  PubMed  Google Scholar 

  43. Seki M, Yanagisawa A, Ninomiya E, et al. Clinicopathology of pancreaticobiliary maljunction: relationship between alterations in background biliary epithelium and neoplastic development. J Hepatobiliary Pancreat Surg. 2005;12:254–62.

    Article  PubMed  Google Scholar 

  44. Tsuchida A, Itoi T, Aoki T, et al. Carcinogenetic process in gallbladder mucosa with pancreaticobiliary maljunction (Review). Oncol Rep. 2003;10:1693–9.

    CAS  PubMed  Google Scholar 

  45. Matsumoto Y, Fujii H, Itakura J, et al. Pancreaticobiliary maljunction: pathophysiological and clinical aspects and the impact on biliary carcinogenesis. Langenbecks Arch Surg. 2003;388:122–31.

    PubMed  Google Scholar 

  46. Shimada K, Yanagisawa J, Nakayama F. Increased lysophosphatidylcholine and pancreatic enzyme content in bile of patients with anomalous pancreaticobiliary ductal junction. Hepatology. 1991;13:438–44.

    Article  CAS  PubMed  Google Scholar 

  47. Tsuchida A, Itoi T. Carcinogenesis and chemoprevention of biliary tract cancer in pancreaticobiliary maljunction. World J Gastrointest Oncol. 2010;2:130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kamisawa T, Kuruma S, Chiba K, et al. Biliary carcinogenesis in pancreaticobiliary maljunction. J Gastroenterol. 2017;52:158–63.

    Article  CAS  PubMed  Google Scholar 

  49. Kamisawa T, Funata N, Hayashi Y, et al. Pathologic changes in the non-carcinomatous epithelium of the gallbladder in patients with a relatively long common channel. Gastrointest Endosc. 2004;60:56–60.

    Article  PubMed  Google Scholar 

  50. Sai JK, Suyama M, Nobukawa B, et al. Precancerous mucosal changes in the gallbladder of patients with occult pancreatobiliary reflux. Gastrointest Endosc. 2005;61:264–8.

    Article  PubMed  Google Scholar 

  51. Beltran MA, Vracko J, Cumsille MA, et al. Occult pancreaticobiliary reflux in gallbladder cancer and benign gallbladder diseases. J Surg Oncol. 2007;96:26–31.

    Article  PubMed  Google Scholar 

  52. Horaguchi J, Fujita N, Noda Y, et al. Amylase levels in bile in patients with a morphologically normal pancreaticobiliary ductal arrangement. J Gastroenterol. 2008;43:305–11.

    Article  CAS  PubMed  Google Scholar 

  53. Kamisawa T, Suyama M, Fujita N, et al. Pancreatobiliary reflux and the length of a common channel. J Hepatobiliary Pancreat Sci. 2010;17:865–70.

    Article  PubMed  Google Scholar 

  54. Matsuda M, Watanabe G, Hashimoto M, et al. Evaluation of pancreaticobiliary maljunction and low bile amylase levels (in Japanese with English abstract). Tando J Jpn Biliary Assoc. 2007;21:119–24.

    Google Scholar 

  55. Matsuda Y, Ishiwata T, Izumiyama-Shimomura N, et al. Gradual telomere shortening and increasing chromosomal instability among PanIN grades and normal ductal epithelia with and without cancer in the pancreas. PLoS One. 2015;10:e0117575.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Izumiyama-Shimomura N, Nakamura K, Aida J, et al. Short telomeres and chromosome instability prior to histologic malignant progression and cytogenetic aneuploidy in papillary urothelial neoplasms. Urol Oncol. 2014;32:135–45.

    Article  CAS  PubMed  Google Scholar 

  57. Ikeda H, Aida J, Hatamochi A, et al. Quantitative fluorescence in situ hybridization measurement of telomere length in skin with/without sun exposure or actinic keratosis. Hum Pathol. 2014;45:473–80.

    Article  CAS  PubMed  Google Scholar 

  58. Aida J, Yokoyama A, Shimomura N, et al. Telomere shortening in the esophagus of Japanese alcoholics: relationships with chromoendoscopic findings, ALDH2 and ADH1B genotypes and smoking history. PLoS One. 2013;8:e63860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aida J, Kobayashi T, Saku T, et al. Short telomeres in an oral precancerous lesion: Q-FISH analysis of leukoplakia. J Oral Pathol Med. 2012;41:372–8.

    Article  PubMed  Google Scholar 

  60. Aida S, Aida J, Hasegawa K, et al. Telomere length of human adult bronchial epithelium and bronchogenic squamous cell carcinoma measured using tissue quantitative fluorescence in situ hybridization. Respiration. 2015;90:321–6.

    Article  CAS  PubMed  Google Scholar 

  61. Research Team for Geriatric Pathology TMIoG. A proposed new definition for the concept of precancerous conditions. 2015. http://www.ttaggg-rtgp.org/assets/files/document/150413E.pdf. Accessed 02 Aug 2017.

  62. Poojary SS, Mishra G, Gupta S, et al. Dysfunction of subtelomeric methylation and telomere length in gallstone disease and gallbladder cancer patients of North Central India. J Hepatobiliary Pancreat Sci. 2016;23:276–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Akira Shimizu of the Department of Analytic Human Pathology, Nippon Medical School, who cooperated in providing the specimens. We also thank Angela Morben, DVM, ELS, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuto Aoki or Toshiyuki Ishiwata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00535-017-1418-y.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, Y., Aida, J., Kawano, Y. et al. Telomere length of gallbladder epithelium is shortened in patients with congenital biliary dilatation: measurement by quantitative fluorescence in situ hybridization. J Gastroenterol 53, 291–301 (2018). https://doi.org/10.1007/s00535-017-1411-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1411-5

Keywords

Navigation