Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy



Development of a nonendoscopic test for Barrett’s esophagus would revolutionize population screening and surveillance for patients with Barrett’s esophagus. Swallowed cell collection devices have recently been developed to obtain cytology brushings from the esophagus: automated detection of neoplasia in such samples would enable large-scale screening and surveillance.


Fourier transform infrared (FTIR) spectroscopy was used to develop an automated tool for detection of Barrett’s esophagus and Barrett’s neoplasia in esophageal cell samples. Cytology brushings were collected at endoscopy, cytospun onto slides and FTIR images were measured. An automated cell recognition program was developed to identify individual cells on the slide.


Cytology review and contemporaneous histology was used to inform a training dataset containing 141 cells from 17 patients. A classification model was constructed by principal component analysis fed linear discriminant analysis, then tested by leave-one-sample-out cross validation. With application of this training model to whole slide samples, a threshold voting system was used to classify samples according to their constituent cells. Across the entire dataset of 115 FTIR maps from 66 patients, whole samples were classified with sensitivity and specificity respectively as follows: normal squamous cells 79.0% and 81.1%, nondysplastic Barrett’s esophagus cells 31.3% and 100%, and neoplastic Barrett’s esophagus cells 83.3% and 62.7%.


Analysis of esophageal cell samples can be performed with FTIR spectroscopy with reasonable sensitivity for Barrett’s neoplasia, but with poor specificity with the current technique.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63:7–42.

    Article  PubMed  Google Scholar 

  2. 2.

    Shu YJ. Cytopathology of the esophagus. An overview of esophageal cytopathology in China. Acta Cytol. 1983;27:7–16.

    CAS  PubMed  Google Scholar 

  3. 3.

    Dawsey SM, Shen Q, Nieberg RK, et al. Studies of esophageal balloon cytology in Linxian, China. Cancer Epidemiol Biomark Prev. 1997;6:121–30.

    CAS  Google Scholar 

  4. 4.

    Spechler S. Barrett’s esophagus: should we brush off this ballooning problem? Gastroenterology. 1997;112:2138–42.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Falk GW, Chittajallu R, Goldblum JR, et al. Surveillance of patients with Barrett’ s esophagus for dysplasia and cancer with balloon cytology. Gastroenterology. 1997;112:1787–97.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hughes JH, Cohen MB. Is the cytologic diagnosis of esophageal glandular dysplasia feasible ? Diagn Cytopathol. 1998;18:312–6.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Geisinger KR, Teot LA, Richter JE. A comparative cytopathologic and histologic study of atypia, dysplasia, and adenocarcinoma in Barrett’s esophagus. Cancer. 1992;69:8–16.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hardwick RH, Morgan RJ, Warren BF, et al. Brush cytology in the diagnosis of neoplasia in Barrett’s esophagus. Dis Esophagus. 1997;10:233–7.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ross-Innes CS, Debiram-Beecham I, O’Donovan M et al. Evaluation of a minimally invasive cell sampling device coupled with assessment of trefoil factor 3 expression for diagnosing Barrett’s esophagus: a multi-center case–control study. PLoS Med. 2015;12:e1001780.

  10. 10.

    Kadri SR, Lao-Sirieix P, O’Donovan M, et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ. 2010;341:c4372.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Old O, Fullwood L, Scott R, et al. Vibrational spectroscopy for cancer diagnostics. Anal Methods. 2014;6:3901–17.

    CAS  Article  Google Scholar 

  12. 12.

    Wang TD, Triadafilopoulos G, Crawford JM, et al. Detection of endogenous biomolecules in Barrett’s esophagus by Fourier transform infrared spectroscopy. Proc Natl Acad Sci U S A. 2007;104:15864–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Quaroni L, Casson AG. Characterization of Barrett esophagus and esophageal adenocarcinoma by Fourier-transform infrared microscopy. Analyst. 2009;134:1240–6.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Amrania H, Antonacci G, Chan C-H, et al. Digistain: a digital staining instrument for histopathology. Opt Express. 2012;20:7290–9.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Townsend D, Miljković M, Bird B, et al. Infrared micro-spectroscopy for cyto-pathological classification of esophageal cells. Analyst. 2015;140:2215–23.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Schubert JM, Bird B, Papamarkakis K, et al. Spectral cytopathology of cervical samples: detecting cellular abnormalities in cytologically normal cells. Lab Investig. 2010;90:1068–77.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Papamarkakis K, Bird B, Schubert JM, et al. Cytopathology by optical methods: spectral cytopathology of the oral mucosa. Lab Investig. 2010;90:589–98.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Miljković M, Bird B, Lenau K, et al. Spectral cytopathology: new aspects of data collection, manipulation and confounding effects. Analyst. 2013;138:3975–82.

    Article  PubMed  Google Scholar 

  19. 19.

    Old OJ, Lloyd GR, Nallala J, et al. Rapid infrared mapping for highly accurate automated histology in Barrett’s oesophagus. Analyst. 2016;142:1227–1234

  20. 20.

    Gajjar K, Ahmadzai A, Valasoulis G, et al. Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS One. 2014;9:e82416.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Bird B, Romeo MJ, Diem M, et al. Cytology by infrared micro-spectroscopy: automatic distinction of cell types in urinary cytology. Vib Spectrosc. 2008;48:101–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc. 2014;9:1771–91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bassan P, Byrne HJ, Bonnier F, et al. Resonant Mie scattering in infrared spectroscopy of biological materials—understanding the “dispersion artefact”. Analyst. 2009;134:1586–93.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bassan P, Kohler A, Martens H, et al. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst. 2010;135:268–77.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors thank Doug Townsend and Max Diem from Northeastern University, Boston, for all their advice on many technical aspects of spectral cytopathology. Oliver Old was in receipt of a Royal College of Surgeons of England Surgical Research Fellowship during this study.

Author information



Corresponding author

Correspondence to Oliver Old.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Old, O., Lloyd, G., Isabelle, M. et al. Automated cytological detection of Barrett’s neoplasia with infrared spectroscopy. J Gastroenterol 53, 227–235 (2018).

Download citation


  • Barrett’s esophagus
  • Esophageal adenocarcinoma
  • Screening
  • Cytology
  • Fourier transform infrared spectroscopy