Skip to main content

Advertisement

Log in

Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

White adipose tissue (WAT) is important for the maintenance of metabolic homeostasis, and metabolic syndrome is sometimes associated with WAT dysfunction in humans and animals. WAT reportedly plays a key, beneficial role in the maintenance of glucose and lipid homeostasis during de novo lipogenesis (DNL). Pu’erh tea extract (PTE) can inhibit harmful, ectopic DNL in the liver, thus protecting against hepatosteatosis, in mice with diet-induced obesity. We examined whether PTE could induce DNL in WAT and consequently protect against hepatosteatosis.

Methods

C57BL/6 male mice were fed a high-fat diet (HFD) with/without PTE for 16 weeks. Systemic insulin sensitivity was determined using HOMA-IR, insulin- and glucose-tolerance tests, and WAT adipogenesis was evaluated by histological analysis. Adipogenesis-, inflammation-, and DNL-related gene expression in visceral AT (VAT) and subcutaneous AT (SAT) was measured using quantitative reverse transcription-PCR. Regression analysis was used to investigate the association between DNL in WAT and systemic insulin resistance or hepatosteatosis.

Results

Pu’erh tea extract significantly reduced the gain of body weight and SAT, but not VAT adiposity, in mice fed the high-fat diet and induced adipogenesis in VAT. The expression of DNL-related genes, including Glut4, encoding an important insulin-regulated glucose transporter (GLUT4), were highly elevated in VAT. Moreover, PTE inhibited VAT inflammation by simultaneously downregulating inflammatory molecules and inducing expression of Gpr120 that encodes an anti-inflammatory and pro-adipogenesis receptor (GPR-120) that recognizes unsaturated long-chain fatty acids, including DNL products. The expression of DNL-related genes in VAT was inversely correlated with hepatosteatosis and systemic insulin resistance.

Conclusions

Activation of DNL in VAT may explain PTE-mediated alleviation of hepatosteatosis symptoms and systemic insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kolotkin RL, Meter K, Williams GR. Quality of life and obesity. Obesity Rev. 2001;2:219–29.

    Article  CAS  Google Scholar 

  2. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.

    Article  CAS  PubMed  Google Scholar 

  5. Hocking S, Samocha-Bonet D, Milner K-L, et al. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013;34:463–500.

    Article  CAS  PubMed  Google Scholar 

  6. Solinas G, Borén J, Dulloo AG. De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol Metab. 2015;4:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chwalibog A, Thorbek G. Energy expenditure by de novo lipogenesis. Br J Nutr. 2001;86:309.

    Article  CAS  PubMed  Google Scholar 

  8. Rezaee F, Dashty M. Role of adipose tissue in metabolic system disorders—adipose tissue is the initiator of metabolic diseases. J Diabetes Metab. 2013;S13:008.

    Google Scholar 

  9. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016;280:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parlee SD, Lentz SI, Mori H, et al. Quantifying size and number of adipocytes in adipose tissue. Methods Enzymol. 2014;537:93–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arner P, Arner E, Hammarstedt A, et al. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS One. 2011;6:e18284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma X, Lee P, Chisholm DJ, et al. Control of adipocyte differentiation in different fat depots; implications for pathophysiology or therapy. Front Endocrinol (Lausanne). 2015;6:1.

    Google Scholar 

  13. Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409:729–33.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho E, Kotani K, Peroni OD, et al. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab. 2005;289:E551–61.

    Article  CAS  PubMed  Google Scholar 

  15. Shepherd PR, Gnudi L, Tozzo E, et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem. 1993;268:22243–6.

    CAS  PubMed  Google Scholar 

  16. Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484:333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eissing L, Scherer T, Tödter K, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nat Commun. 2013;4:1528.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nuotio-Antar AM, Poungvarin N, Li M, et al. FABP4-Cre mediated expression of constitutively active ChREBP protects against obesity, fatty liver, and insulin resistance. Endocrinology. 2015;156:4020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Filhoulaud G, Guilmeau S, Dentin R, et al. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab. 2013;24:257–68.

    Article  CAS  PubMed  Google Scholar 

  20. Witte N, Muenzner M, Rietscher J, et al. The glucose sensor ChREBP links de novo lipogenesis to PPARgamma activity and adipocyte differentiation. Endocrinology. 2015;156:4008–19.

    Article  CAS  PubMed  Google Scholar 

  21. Iizuka K, Bruick RK, Liang G, et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. 2004;101:7281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nadler ST, Stoehr JP, Schueler KL, et al. The expression of adiopogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA. 2000;97:11371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diraison F, Dusserre E, Vidal H, et al. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab. 2002;282:E46–51.

    CAS  PubMed  Google Scholar 

  24. Ortega FJ, Mayas D, Moreno-Navarrete JM, et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity (Silver Spring). 2010;18:13–20.

    Article  CAS  Google Scholar 

  25. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao H, Gerhold K, Mayer JR, et al. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yore MM, Syed I, Moraes-Vieira PM, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159:318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talukdar S, Olefsky JM, Osborn O. Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci. 2011;32:543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miyamoto J, Hasegawa S, Kasubuchi M, et al. Nutritional signaling via free fatty acid receptors. Int J Mol Sci. 2016;17:450.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yilmaz M, Claiborn KC, Hotamisligil GS. De novo lipogenesis products and endogenous lipokines. Diabetes. 2016;65:1800–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oh DY, Walenta E, Akiyama TE, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med. 2014;20:942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ichimura A, Hara T, Hirasawa A. Regulation of energy homeostasis via GPR120. Front Endocrinol (Lausanne). 2014;5:111.

    Google Scholar 

  33. Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.

    Article  CAS  PubMed  Google Scholar 

  34. Reimann F, Gribble FM. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion. J Diabetes Investig. 2016;7[Suppl 1]:13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichimura A, Hasegawa S, Kasubuchi M, et al. Free fatty acid receptors as therapeutic targets for the treatment of diabetes. Front Pharmacol. 2014;5:236.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Matsuzaka T, Shimano H, Yahagi N, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13:1193–202.

    Article  CAS  PubMed  Google Scholar 

  37. Ichimura A, Hirasawa A, Poulain-Godefroy O, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483:350–4.

    Article  CAS  PubMed  Google Scholar 

  38. Cai X, Fang C, Hayashi S, et al. Pu-erh tea extract ameliorates high-fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice. J Gastroenterol. 2016;51:819–29.

    Article  CAS  PubMed  Google Scholar 

  39. Salgado AL, Carvalho Ld, Oliveira AC, et al. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq Gastroenterol. 2010;47:165–9.

    Article  PubMed  Google Scholar 

  40. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem. 2008;77:289–312.

    Article  CAS  PubMed  Google Scholar 

  41. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  42. van Beek L, van Klinken JB, Pronk AC, et al. The limited storage capacity of gonadal adipose tissue directs the development of metabolic disorders in male C57Bl/6J mice. Diabelotogia. 2015;58:1601–9.

    Google Scholar 

  43. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gotoh C, Hong YH, Iga T, et al. The regulation of adipogenesis through GPR120. Biochem Biophys Res Commun. 2007;354:591–7.

    Article  CAS  PubMed  Google Scholar 

  45. Yamashita Y, Wang L, Wang L, et al. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014;5:2420–9.

    Article  CAS  PubMed  Google Scholar 

  46. Rocha A, Bolin AP, Cardoso CA, et al. Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur J Nutr. 2016;55:2231–44.

    Article  CAS  PubMed  Google Scholar 

  47. Mayerson AB, Hundal RS, Dufour S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes. 2002;51:797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aouadi M, Tencerova M, Vangala P, et al. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc Natl Acad Sci USA. 2013;110:8278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    Article  CAS  PubMed  Google Scholar 

  50. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chau YY, Bandiera R, Serrels A, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014;16:367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vatier C, Kadiri S, Muscat A, et al. Visceral and subcutaneous adipose tissue from lean women respond differently to lipopolysaccharide-induced alteration of inflammation and glyceroneogenesis. Nutr Diabetes. 2012;2:e51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bigornia SJ, Farb MG, Mott MM, et al. Relation of depot-specific adipose inflammation to insulin resistance in human obesity. Nutr Diabetes. 2012;2:e30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baglioni S, Cantini G, Poli G, et al. Functional differences in visceral and subcutaneous fat pads orinigate from differences in the adipose stem cell. PLoS One. 2012;7:e36569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeffery E, Wing A, Holtrup B, et al. The adipose tissue microenvironment regulates depot-specifc adipogenesis in obesity. Cell Metab. 2016;24:142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scherer T, O’Hare J, Diggs-Andrews K, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wueest S, Rapold RA, Rytka JM, et al. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia. 2009;52:541–6.

    Article  CAS  PubMed  Google Scholar 

  59. Slawik M, Vidal-Puig AJ. Lipotoxocity, overnutrition and energy metabolism in aging. Ageing Res Rev. 2006;5:144–64.

    Article  CAS  PubMed  Google Scholar 

  60. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;208:501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Zhang X, Heckmann BL, et al. Relative contribution of adipose triglyceride lipase and hormone-sensitive lipase to tumor necrosis factor-alpha (TNF alpha)-induced lipolysis in adipocytes. J Biol Chem. 2011;286:40477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin J-K, Lin-Shiau S-Y. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res. 2006;50:211–7.

    Article  CAS  PubMed  Google Scholar 

  63. Deng Y-T, Lin-Shiau S-Y, Shyur L-F, et al. Pu-erh tea polysaccharides decrease blood sugar by inhibition of alpha-glucosidase activity in vitro. Food Funct. 2015;6:1539–46.

    Article  CAS  PubMed  Google Scholar 

  64. Gong J, Peng C, Chen T, et al. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action. J Food Sci. 2010;75:H182–9.

    Article  CAS  PubMed  Google Scholar 

  65. Panchal SK, Wong W-Y, Kauter K, et al. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition. 2012;28:1055–62.

    Article  CAS  PubMed  Google Scholar 

  66. Shimamura Y, Yoda M, Sakakibara H, et al. Pu-erh tea suppresses diet-induced body fat accumulation in C57BL/6J mice by down-regulating SREBP-1c and related molecules. Biosci Biotechnol Biochem. 2013;77:1455–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Nana Iwami, Keiko Mitani, and Tomoko Mizobuchi for their excellent technical assistance. We also thank Qin Yang and Koubun Yasuda for helpful discussions. Xianbin Cai was supported by the State Scholarship Fund of China Scholarship Council (CSC). This study was partly supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2012–2015 and by the Pu’erh Tea Research Institute (Yunnan, China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhei Nishiguchi or Jun Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

X. Cai and S. Hayashi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Hayashi, S., Fang, C. et al. Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. J Gastroenterol 52, 1240–1251 (2017). https://doi.org/10.1007/s00535-017-1332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1332-3

Keywords

Navigation